Please wait a minute...
Chinese Physics, 2000, Vol. 9(8): 630-633    DOI: 10.1088/1009-1963/9/8/015
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev  

ENHANCEMENT OF FERROMAGNETIC CLUSTER INDUCED BY MAGNETIC FIELD IN THE PHASE-SEPARATED La0.5Ca0.5MnO3

Li Run-wei (李润伟), Sun Ji-rong (孙继荣), Wang Zhi-hong (王志宏), Chen Xin (陈新), Zhang Shao-ying (张绍英), Shen Bao-gen (沈保根)
State Key Laboratory of Magnetism, Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China
Abstract  Magnetic and transport properties of La0.5Ca0.5MnO3 have been investigated by measuring the magnetization and resistance in zero-field-cooled (ZFC) and field-cooled (FC) modes. Conspicuously irreversible behaviors of magnetization/resistance in the two different modes were observed below the charge ordering transition temperature (TCO). The ZFC and FC magnetizations at 5K, as functions of the magnetic field, coincide for $\mu$0H≤1T. Afterwards, the ZFC magnetization tends to an approximate constant, but the FC one increases linearly with increasing field. There exists an excellent correspondence between magnetization and resistance below TCO. All the results suggest that the ferromagnetic clusters embed in the charge-ordered matrix. The phenomenon of ferromagnetic clusters growing up easily in the FC procedure has been interpreted according to the model of thermally activated two-level system.
Keywords:  ferromagnetic cluster      phase separation  
Received:  13 March 2000      Accepted manuscript online: 
PACS:  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.47.Gk (Colossal magnetoresistance)  
  75.50.Dd (Nonmetallic ferromagnetic materials)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Natural Science Foundation of China and State Key Project of Fundamental Research of China (Grant No. G1998061305)

Cite this article: 

Li Run-wei (李润伟), Sun Ji-rong (孙继荣), Wang Zhi-hong (王志宏), Chen Xin (陈新), Zhang Shao-ying (张绍英), Shen Bao-gen (沈保根) ENHANCEMENT OF FERROMAGNETIC CLUSTER INDUCED BY MAGNETIC FIELD IN THE PHASE-SEPARATED La0.5Ca0.5MnO3 2000 Chinese Physics 9 630

[1] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[2] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[3] Phase separation and super diffusion of binary mixtures ofactive and passive particles
Yan Wang(王艳), Zhuanglin Shen(谌庄琳), Yiqi Xia(夏益祺), Guoqiang Feng(冯国强), Wende Tian(田文得). Chin. Phys. B, 2020, 29(5): 053103.
[4] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[5] Monitoring the formation of oil-water emulsions with a fast spatially resolved NMR spectroscopy method
Meng-Ting You(游梦婷), Zhi-Liang Wei(韦芝良), Jian Yang(杨健), Xiao-Hong Cui(崔晓红), Zhong Chen(陈忠). Chin. Phys. B, 2018, 27(2): 028201.
[6] Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy
Xiaojun Bai(白晓军), Yaocen Wang(汪姚岑), Chongde Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116402.
[7] Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field
Qian Li(李潜), Dun-Hui Wang(王敦辉), Qing-Qi Cao(曹庆琪), You-Wei Du(都有为). Chin. Phys. B, 2017, 26(9): 097502.
[8] Electric current-induced giant electroresistance in La0.36Pr0.265Ca0.375MnO3 thin films
Yinghui Sun(孙颖慧), Yonggang Zhao(赵永刚), Rongming Wang(王荣明). Chin. Phys. B, 2017, 26(4): 047103.
[9] Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes
Xiao-Jie Chen(陈晓洁), Qing Liang(梁清). Chin. Phys. B, 2017, 26(4): 048701.
[10] Spatial heterogeneity in liquid-liquid phase transition
Yun-Rui Duan(段云瑞), Tao Li(李涛), Wei-Kang Wu(吴维康), Jie Li(李洁), Xu-Yan Zhou(周戌燕), Si-Da Liu(刘思达), Hui Li(李辉). Chin. Phys. B, 2017, 26(3): 036401.
[11] Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells
Tong-Fang Liu(刘统方), Yu-Feng Hu(胡煜峰), Zhen-Bo Deng(邓振波), Xiong Li(李熊), Li-Jie Zhu(朱丽杰), Yue Wang(王越), Long-Feng Lv(吕龙锋), Tie-Ning Wang(王铁宁), Zhi-Dong Lou(娄志东), Yan-Bing Hou(侯延冰), Feng Teng(滕枫). Chin. Phys. B, 2016, 25(8): 088801.
[12] Phase equilibrium of Cd1-xZnxS alloys studied by first-principles calculations and Monte Carlo simulations
Fu-Zhen Zhang(张付珍), Hong-Tao Xue(薛红涛), Fu-Ling Tang(汤富领), Xiao-Kang Li(李小康), Wen-Jiang Lu(路文江), Yu-Dong Feng(冯煜东). Chin. Phys. B, 2016, 25(1): 013103.
[13] Curvature-induced lipid segregation
Zheng Bin (郑斌), Meng Qing-Tian (孟庆田), Robin L. B. Selinger, Jonathan V. Selinger, Ye Fang-Fu (叶方富). Chin. Phys. B, 2015, 24(6): 068701.
[14] Anisotropic transport properties of charge-ordered La5/8-yPryCa3/8MnO3 (y=0.43) film
Liu Yuan-Bo (刘渊博), Wang Shuan-Hu (王拴虎), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根). Chin. Phys. B, 2015, 24(5): 057304.
[15] Dynamic resistive switching in a three-terminal device based on phase separated manganites
Wang Zhi-Qiang (王志强), Yan Zhi-Bo (颜志波), Qin Ming-Hui (秦明辉), Gao Xing-Sen (高兴森), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(3): 037101.
No Suggested Reading articles found!