Please wait a minute...
Chin. Phys., 2000, Vol. 9(4): 279-283    DOI: 10.1088/1009-1963/9/4/006
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

THE EFFECT OF MESH ANODE ON CATHODIC ARC IN FOCUSING MAGNETIC FIELD

Tang Bao-yina, T. K. Kwoka, Zeng Zhao-minga, Paul K. Chua, Zhang Taob, Hou Jun-dac, I. G. Brownd
a Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong; b Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong; Institute of low energy Nuclear Physics, Beijing Normal University 100875, China; c Institute of low energy Nuclear Physics, Beijing Normal University 100875, China; d Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
Abstract  The performance and characteristics of a cathodic arc deposition apparatus consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode are investigated. The arc voltage Va is measured with a fixed arc current. The relationship between Va and the magnetic field B with and without a mesh is obtained. In addition, the relationship between the arc current Ia and Vc, the voltage to which the artificial transmission line was charged, is measured with and without the mesh to determine the minimum ignition voltage for the arc. The arc resistance increases with the focusing magnetic strength B and decreases when using the mesh. Our results indicate that the high transparency and large area of the mesh allows a high plasma flux to penetrate the anode from the cathodic arc. The mesh also stabilizes the cathodic arc and gives better performance when used in concert with a focusing magnetic field.
Received:  24 June 1999      Published:  12 June 2005
PACS:  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.50.Dg (Plasma sources)  
  52.70.Ds (Electric and magnetic measurements)  
  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
Fund: Project supported by Hong Kong RGC Earmarked (Grants 9040332 and 9040344), Beijing Science and Technology New Star Plan of contract No. 952870400

Cite this article: 

Tang Bao-yin, T. K. Kwok, Zeng Zhao-ming, Paul K. Chu, Zhang Tao, Hou Jun-da, I. G. Brown THE EFFECT OF MESH ANODE ON CATHODIC ARC IN FOCUSING MAGNETIC FIELD 2000 Chin. Phys. 9 279

[1] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[2] Estimation of tungsten production from the upper divertor in EAST during edge localized modes
Jing Ou(欧靖), Nong Xiang(项农), Zong-Zheng Men(门宗政), Ling Zhang(张凌), Ji-Chan Xu(许吉禅), Wei Gao(高伟). Chin. Phys. B, 2019, 28(12): 125201.
[3] Numerical study of influence of J×B force on melt layer under conditions relevant to ITER ELMs
Yan Huang(黄艳), Ji-Zhong Sun(孙继忠), Juan Cai(蔡娟), Zhen-Yue Sun(孙振月), Chao-Feng Sang(桑超峰), De-Zhen Wang(王德真). Chin. Phys. B, 2019, 28(4): 045201.
[4] Diffusion behavior of hydrogen isotopes in tungsten revisited by molecular dynamics simulations
Mingjie Qiu(丘明杰), Lei Zhai(翟磊), Jiechao Cui(崔节超), Baoqin Fu(付宝勤), Min Li(李敏), Qing Hou(侯氢). Chin. Phys. B, 2018, 27(7): 073103.
[5] Radiative divertor behavior and physics in Ar seeded plasma on EAST
Jingbo Chen(陈竞博), Yanmin Duan(段艳敏), Zhongshi Yang(杨钟时), Liang Wang(王亮), Kai Wu(吴凯), Kedong Li(李克栋), Fang Ding(丁芳), Hongmin Mao(毛红敏), Jichan Xu(许吉禅), Wei Gao(高伟), Ling Zhang(张凌), Jinhua Wu(吴金华), Guang-Nan Luo(罗广南), EAST Team. Chin. Phys. B, 2017, 26(9): 095205.
[6] Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application
Qi Li(李琦), Bing-qiang Yu(于兵强), Zhao-feng Li(李兆峰), Xiao-feng Wang(王晓峰), Zi-chen Zhang(张紫辰), Ling-feng Pan(潘岭峰). Chin. Phys. B, 2017, 26(8): 085202.
[7] Surface enhancement of molecular ion H2+ yield in a 2.45-GHz electron-cyclotron resonance ion source
Yuan Xu(徐源), Shi-Xiang Peng(彭士香), Hai-Tao Ren(任海涛), Ai-Lin Zhang(张艾霖), Tao Zhang(张滔), Jing-Feng Zhang(张景丰), Jia-Mei Wen(温佳美), Wen-Bin Wu(武文斌), Zhi-Yu Guo(郭之虞), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2017, 26(8): 085203.
[8] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[9] Effects of N2/O2 flow rate on the surface properties and biocompatibility of nano-structured TiOxNy thin films prepared by high vacuum magnetron sputtering
Sehrish Saleem, R. Ahmad, Uzma Ikhlaq, R. Ayub, Jin Wei Hong, Xu Rui Zhen, Li Peng Hui, Khizra Abbas, Paul K. Chu. Chin. Phys. B, 2015, 24(7): 075202.
[10] A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale
Li Zhi-Quan, Piao Rui-Qi, Zhao Jing-Jing, Meng Xiao-Yun, Tong Kai. Chin. Phys. B, 2015, 24(7): 077303.
[11] Experimental and modeling researches of dust particles in the HL-2A tokamak
Huang Zhi-Hui, Yan Long-Wen, Tomita Yukihiro, Feng Zhen, Cheng Jun, Hong Wen-Yu, Pan Yu-Dong, Yang Qing-Wei, Duan Xu-Ru, HL-2A Team. Chin. Phys. B, 2015, 24(2): 025204.
[12] Reconstruction of heat flux profile on the HL-2A divertor plate with a three-dimensional analysis model
Gao Jin-Ming, Li Wei, Xia Zhi-Wei, Pan Yu-Dong, Lu Jie, Yi Ping, Liu Yi. Chin. Phys. B, 2013, 22(1): 015202.
[13] Dielectric layer-dependent surface plasmon effect of metallic nanoparticles on silicon substrate
Xu Rui,Wang Xiao-Dong,Liu Wen,Xu Xiao-Na,Li Yue-Qiang,Ji An,Yang Fu-Hua,Li Jin-Min. Chin. Phys. B, 2012, 21(2): 025202.
[14] Observation of chaotic ELMs in HL-2A tokamak
Huang Yuan, Nie Lin, Yu De-Liang, Liu Chun-Hua, Feng Zhen, Duan Xu-Ru. Chin. Phys. B, 2011, 20(5): 055201.
[15] Experimental studies of plasma sheath near meshes of different transmissivity
Li Yi-Ren, Ma Jin-Xiu, Zheng Yao-Bang, Zhang Wen-Gui. Chin. Phys. B, 2010, 19(8): 085201.
No Suggested Reading articles found!