Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100505    DOI: 10.1088/1674-1056/acd62b
GENERAL Prev   Next  

Visibility graph approach to extreme event series

Jing Zhang(张晶)1,2, Xiaolu Chen(陈晓露)1, Haiying Wang(王海英)1, Changgui Gu(顾长贵)1, and Huijie Yang(杨会杰)1,†
1 Department of Systems Science, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 Department of Business, Wuxi Taihu University, Wuxi 214064, China
Abstract  An extreme event may lead to serious disaster to a complex system. In an extreme event series there exist generally non-trivial patterns covering different time scales. Investigations on extreme events are currently based upon statistics, where the patterns are merged into averages. In this paper from extreme event series we constructed extreme value series and extreme interval series. And the visibility graph is then adopted to display the patterns formed by the increases/decreases of extreme value or interval faster/slower than the linear ones. For the fractional Brownian motions, the properties for the constructed networks are the persistence, threshold, and event-type-independent, $e.g.$, the degree distributions decay exponentially with almost identical speeds, the nodes cluster into modular structures with large and similar modularity degrees, and each specific network has a perfect hierarchical structure. For the volatilities of four stock markets (NSDQ, SZI, FTSE100, and HSI), the properties for the former three's networks are threshold- and market-independent. Comparing with the factional Brownian motions, their degree distributions decay exponentially but with slower speeds, their modularity behaviors are significant but with smaller modularity degrees. The fourth market behaves similar qualitatively but different quantitatively with the three markets. Interestingly, all the transition frequency networks share an identical backbone composed of nine edges and the linked graphlets. The universal behaviors give us a framework to describe extreme events from the viewpoint of network.
Keywords:  extreme events      visibility graph  
Received:  25 March 2023      Revised:  12 May 2023      Accepted manuscript online:  17 May 2023
PACS:  05.45.Tp (Time series analysis)  
  89.65.Gh (Economics; econophysics, financial markets, business and management)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11805128, 11875042, and 11505114) and the Shanghai Project for Construction of Top Disciplines, China (Grant No. USST-SYSBIO).
Corresponding Authors:  Huijie Yang     E-mail:  hjyang@ustc.edu.cn

Cite this article: 

Jing Zhang(张晶), Xiaolu Chen(陈晓露), Haiying Wang(王海英), Changgui Gu(顾长贵), and Huijie Yang(杨会杰) Visibility graph approach to extreme event series 2023 Chin. Phys. B 32 100505

[1] Chowdhurya S N, Ray A, Dana S K and Ghosh D 2022 Phys. Rep. 966 1
[2] Majumdar S N, Pal A and Schehr F 2020 Phys. Rep. 840 1
[3] Scheffer M, Bascompte J, Brock W A, Brovkin V, Carpenter S R, et al. 2009 Nature 461 53
[4] Battiston S, Farmer J D, Flache A, Garlaschelli D, Haldane A G, Heesterbee K H, et al. 2016 Science 351 818
[5] Arani B M S, Carpenter S R, Lahti L, Nes E H V and Scheffer M 2021 Science 372 eaay4895
[6] Bunde A, Eichner J F, Kantelhardt J W and Havlin S 2005 Phys. Rev. Lett. 94 048701
[7] Bunde A, Eichner J F, Kantelhardt J W and Havlin S 2006 Phys. Rev. E 73 016130
[8] Santhanam M S and Kantz H 2008 Phys. Rev. E 78 051113
[9] Nicolis C and Nicolis G 2009 Phys. Rev. E 80 061119
[10] Aghamohammadi C and Crutchfield J P 2017 Phys. Rev. E 95 032101
[11] Gao Z K, Small M and Kurths J 2016 Europhys. Lett. 116 50001
[12] Zou Y, Donner R V, Marwan N, Donges J F and Kurths J 2019 Phys. Rep. 787 1
[13] Zhang J and Small M 2006 Phys. Rev. Lett. 96 238701
[14] Zhang J, Luo X, Nakamura T, Sun J and Small M 2007 Phys. Rev. E 75 016218
[15] Zhang J, Sun J, Luo X, Zhang K, Nakamura T and Small M 2008 Physica D 237 2856
[16] Yang Y and Yang H J 2008 Physica A 387 1381
[17] Marwan M, Donges J F, Zou Y, Donner R V and Kurths J 2009 Phys. Lett. A 373 4246
[18] Donner R, Zou Y, Donges J, Marwan N and Kurths J 2010 New J. Phys. 12 033025
[19] Gao Z and Jin N D 2009 Phys. Rev. E 79 066303
[20] Pham T D 2017 Europhys. Lett. 118 20003
[21] Tumminello M, Aste T, Matteo T D and Mantegna R N 2005 Proc. Natl. Acad. Sci. USA 102 10421
[22] Xu X, Zhang and Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601
[23] Lacasa L, Luque B, Ballesteros F, Luque J and Nuno C 2008 Proc. Natl. Acad. Sci. USA 105 4972
[24] Luque B, Lacasa L, Ballesteros F and Luque J 2009 Phys. Rev. E 80 046103
[25] Ni X H, Jiang Z Q and Zhou W X 2009 Phys. Lett. A 373 3822
[26] Xiao Q, Pan X, Li X L, Mutua S, Yang H J, Jiang Y, Wang J Y and Zhang Q J 2014 Chin. Phys. B 23 078904
[27] Mantegna R N and Stanley H E 2000 Introduction to Econophysics: Correlations Complexity in Finance (Cambridge University Press, Cambridge)
[28] https://uk.finance.yahoo.com/world-indices/ Accessed in July 20, 2022
[29] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[30] Lacasa L, Luque L, Luque B and Nuno J C 2009 Europhys. Lett. 86 30001
[31] Girvan M and Newman M E J 2002 Proc. Natl. Acad. Sci. USA 99 7821
[32] Newman M E J and Girvan M 2004 Phys. Rev. E 69 026113
[33] Ravasz E and Barabasi A L 2003 Phys. Rev. E 67 026112
[34] McCullough M, Small M, Stemler T and Iu H C 2015 Chaos 25 053101
[35] Stephen M, Gu C G and Yang H J 2015 PLoS ONE 10 e0143015
[36] Iacovacci J and Lacasa L 2016 Phys. Rev. E 93 042309
[37] Mutua S, Gu C G and Yang H J 2016 Chaos 26 053107
[38] Kulp C W, Chobot J M, Freitas H R and Sprechini G D 2016 Chaos 26 073114
[39] McCullough M, Small M, Iu H H C and Stemler T 2017 Phil. Trans. Roy. Soc. A 375 20170016
[40] McCullough M, Sakellariou K, Stemler T and Small M 2017 Chaos 27 035814
[41] Zhang J Y, Zhou J, Tang M, Guo H, Small M and Zou Y 2017 Sci. Rep. 7 7795
[42] Guo H, Zhang J Y, Zou Y and Guan S G 2018 Front. Phys. 13 130508
[43] Ren H G, Yuan Q S, Semba S, Weng T F, Gu C G and Yang H J 2020 Phys. Lett. A 384 126781
[44] Wang Y, Weng T F, Deng S G, Gu C G and Yang H J 2019 Chaos 29 023109
[1] Two-dimensional horizontal visibility graph analysis of human brain aging on gray matter
Huang-Jing Ni(倪黄晶), Ruo-Yu Du(杜若瑜), Lei Liang(梁磊), Ling-Ling Hua(花玲玲), Li-Hua Zhu(朱丽华), and Jiao-Long Qin(秦姣龙). Chin. Phys. B, 2023, 32(7): 078501.
[2] Detection of EEG signals in normal and epileptic seizures with multiscale multifractal analysis approach via weighted horizontal visibility graph
Lu Ma(马璐), Yan-lin Ren(任彦霖), Ai-jun He(何爱军), De-qiang Cheng(程德强), and Xiao-dong Yang(杨小冬). Chin. Phys. B, 2023, 32(11): 110506.
[3] Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event
Feng Tai-Chen (封泰晨), Zhang Ke-Quan (张珂铨), Su Hai-Jing (苏海晶), Wang Xiao-Juan (王晓娟), Gong Zhi-Qiang (龚志强), Zhang Wen-Yu (张文煜). Chin. Phys. B, 2015, 24(10): 109201.
[4] Row-column visibility graph approach to two-dimensional landscapes
Xiao Qin (肖琴), Pan Xue (潘雪), Li Xin-Li (李信利), Mutua Stephen, Yang Hui-Jie (杨会杰), Jiang Yan (蒋艳), Wang Jian-Yong (王建勇), Zhang Qing-Jun (张庆军). Chin. Phys. B, 2014, 23(7): 078904.
[5] Visitor flow pattern of Expo 2010
Fan Chao(樊超) and Guo Jin-Li(郭进利) . Chin. Phys. B, 2012, 21(7): 070209.
[6] Trend of extreme precipitation events over China in last 40 years
Zhang Da-Quan(章大全), Feng Guo-Lin(封国林), and Hu Jing-Guo(胡经国). Chin. Phys. B, 2008, 17(2): 736-742.
No Suggested Reading articles found!