Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 108202    DOI: 10.1088/1674-1056/adde35
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synthesis, characterizations, electrochemical and molecular docking studies of CoxFe1-xFe2O4/Fe2O3 nanoparticle

M. I. M. Ismail1,2,†, Hassen Harzali3,4, HaikelHrichi2,5, Hasan A. El-adawy3,7, Khaled A. Abdelshafeek3,6, and Ahmed A. Elhenaw3,7
1 Department of Physics, Faculty of Science, Port Said University, Port Said, Egypt;
2 Department of Physics, Faculty of Sciences, Al-Baha University, Al-Baha 65731, KSA;
3 Department of Chemistry, Faculty of Sciences, Al-Baha University, Al-Baha 65731, KSA;
4 Applied Mineral Chemistry Laboratory (LR19ES02), Department of Chemistry, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia;
5 Laboratory of Interfaces and Advanced Materials, Faculty of Science, University of Monastir, Monastir 5019, Tunisia;
6 Pharmaceutical Industries and Drugs Institute, Chemistry of Medicinal Plants Department, National Research Center, ElBohouth Street, Dokki, Giza 12622, Egypt;
7 Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, Egypt
Abstract  The advantageous magnetic, optical, and antibacterial properties of magnetic nanoparticles have recently drawn a lot of attention in the field of biomedicine. One of the most famous super paramagnetic materials, nanoferrite, is made up of two types of spinel structures: inverse and normal. Cobalt ferrite's inverse spinel structure offers several benefits, including excellent magnetostrictivity, good coupling efficiency, and inexpensive cost. This study's objective is to synthesize, characterize, and investigate the characteristics of the electrochemical properties of Co$_{x}$Fe$_{1-x}$Fe$_{2}$O$_{4}$/Fe$_{2}$O$_{3 }$ ($x = 0.30$ and 0.77) nanoparticles using the chemical co-precipitation method. The physical properties of the produced nanoparticles were investigated using x-ray diffraction (XRD), transmission electron microscopy (TEM), and a vibrating sample magnetometer (VSM). The band gap properties of magneto-nano powders, including the direct and indirect band gap energies, and Urbach energy, are found. Scanning electron microscopy showed the presence of spherical nanoparticles ranging from 20.7 nm-23.7 nm. The analysis of Co$_{x}$Fe$_{1-x}$Fe$_{2}$O$_{4}$/Fe$_{2}$O$_{3 }$ ($x = 0.30$ and 0.77) nanoparticles, for instance, reveals differences in their surface characteristics that are significant for their potential applications. Parameters like $d_{\rm norm}$, $d_{\rm e}$, and $d_{\rm i}$, along with shape index and curvedness, contribute to a comprehensive understanding of the molecular surface, which is crucial for the design of new materials with desired physical and chemical properties. Molecular docking studies have revealed promising interactions between certain crystals and DNA gyrase, mirroring the binding mode of known inhibitors. This suggests potential for these crystals to serve as antimicrobial agents in future research. Such findings are crucial as they contribute to the development of new treatments against antibiotic-resistant bacteria, a growing global health concern.
Keywords:  magnetic nanoparticles      cobalt ferrite      energy gap      electrochemical assessments      molecular docking  
Received:  09 March 2025      Revised:  12 May 2025      Accepted manuscript online:  29 May 2025
PACS:  82.45.Rr (Electroanalytical chemistry)  
  75.20.-g (Diamagnetism, paramagnetism, and superparamagnetism)  
  71.20.Ps (Other inorganic compounds)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Corresponding Authors:  M. I. M. Ismail     E-mail:  muhammad_398@yahoo.com

Cite this article: 

M. I. M. Ismail, Hassen Harzali, HaikelHrichi, Hasan A. El-adawy, Khaled A. Abdelshafeek, and Ahmed A. Elhenaw Synthesis, characterizations, electrochemical and molecular docking studies of CoxFe1-xFe2O4/Fe2O3 nanoparticle 2025 Chin. Phys. B 34 108202

[1] Tamboli O Y, Patange S M, MohantaY K, Sharma R and Zakde K R 2023 J. Nanomater. 2023 770212
[2] Morais D O, Pancotti A, Souza G S, Saivish M V, Braoios A, Moreli M L, Souza M V B, Costa V G and Wang 2010 J. Mater. Sci. Mater. Med. 32 101
[3] Ashour A H, El-Batal A I, Abdel Maksoud M I A, El-Sayyad G S, Labib Sh, Abdeltwab E and El-Okr M M 2018 Partic 40 141
[4] Harzali H and Azizi M 2024 J. Environ. Chem. Eng. 12 113413
[5] Alcaá O, Bricño S, Brämer-Escamilla W, Silva and Toroidal P 2017 Mater. Chem. Phys. 192 17
[6] Deraz, N and Abd-Elkader O H 2014 J. Anal. Appl. Pyrol. 106 21
[7] El Ghandoor H, Zidan H M, Khalil M MM H and Ismail M I M 2012 Phys. Scr. 86 01540
[8] Wu F, Tian F, Li M, Geng S, Qiu L, He L, Li L, Chen Z, Yu Y, Yang W and Hou Y 2025 Angew. Chem. Int. Edn. 64 e202413250
[9] Li L, Tian F, Wu F, Qiu L, Geng S, Li M, Chen Z, Yang W, Liu Y and Yu Y 2025 Appl. Catal. B Environ. 361 124660
[10] Cui S,Wang F and Yang W 2025 Sens. Actuators B. Chem. 425 136996
[11] Tatarchuk T, Bououdina M, Paliychuk N, Yaremiy I and Moklyak V 2017 J. Alloys Compd. 694 77
[12] Kombaiah K, Vijaya J J, Kennedy L J, Bououdina M, Ramalingam R J and Al-Lohedan H A 2018 Mater. Chem. Phys. 204 410
[13] Hammiche-Bellal Y, Djadoun A, Meddour-Boukhobza L, Benadda A, Auroux A, Berger MH and Mernache F 2016 Mater. Chem. Phys. 177 384
[14] Dabagh S, Haris S A and Ertas Y N 2023 J. Clust. Sci. 34 2067
[15] Gheidari D, Mehrdad M, Maleki S and Hosseini S 2020 Heliyon 6 e05058
[16] El Ghandoor H, Zidan H M, Khalil M M H and Ismail M I M 2012 Int. J. Electrochem. Sci. 7 5734
[17] Gutierrez F V, Lima I S, De Falco A, Ereias B M, Baffa O, Diego de Abreu Lima C, Morais Sinimbu L I, De la Presa P, Luz-Lima C and Araujo D F J F 2024 Heliyon 10 e25781
[18] Moumen N and Pileni M P 1996 Chem. Mater. 8 51128
[19] Li X, Chen G, Po-Lock Y and Kutal C 2002 J. Mater. Sci. Lett. 21 1881
[20] Lacava Z, Azevedo R, Martins E, Lacava L, Freitas M, Garcia V, Rébula C, Lemos A, Sousa M, Tourinho F, Da Silva M and Morais P 1999 J. Magn. Magn. Mater. 201 431
[21] Pinheiro W O, Fascineli M L, Farias G R, Horst F H, Corêa L H, Magalães K G, Sousa M H, Azevedo R B and Lacava M Z G M 1999 Int. J. Nanomed. 14 3375
[22] Schrödinger Maestro Schrödinger. Schrödinger Release 2018-1 2018
[23] Ha N, Van Dat D T and Nguyet T T 2019 J. Sci. Nat. Sci. Technol. 35 55
[24] Cui S Wang F and Yang W 2025 Sens. Actuators B Chem. 425 136996
[25] Gong H, Bao C, Guo X, Tian F, Qiu L and Yang W 2024 Microchem. J. 204 110987
[26] Amel Z, Abdelhafid S, Diana D, Riviere E, Salim O, Jacqueline B and Mehran M 2023 New J. Chem. 47 2626
[27] Schutz D and McCarthy G 1987 Powder diffraction data (North Dakota State University) ICDD Grant-in-Aid
[28] Li L, Tian F, Wu F, Qiu L, Geng S, Li M, Chen Z, Yang W, Liu Y and Yu Y 2025 Appl. Catal. B Environ. 361 124660
[29] De Gonález A B and Darby S 2004 Lancet 363 345
[30] Cullity B D and Stock S R 2014 Elements of X-Ray Diffraction, 3rd Edn. (New Jersey: Pearson Education) p. 103
[31] Kabbur S M, Waghmare S D, Ghodake U R and Suryavanshi S S 2018 AIP Conf. Proc. 1942 130002
[32] William D, Callister J R and Rethwisch D G 2018 Materials Science and Engineering: an Introduction, 10th edn. (New Jersey: John Wiley & Sons, Inc.) p. 409
[33] Rao B P, Caltun O, Cho W S, Kim C O and Kim C G 2007 J. Magn. Magn. Mater. 310 e812
[34] Ismail M I M 2018 Mater. Res. Express 5 095004
[35] Arai K I and Ishiyama K 1999 J. Magn. Magn. Mater. 133 1
[36] Davis E A and Mott N F 1970 Phi. Mag. 179 0903
[37] Ismail M I M and Faramawy A M 2024 Phys. Scr. 99 055961
[38] El-Diasty F, El-Sayed H M, El-Hosiny F I and IsmailMIM2009 Curr. Opin. Solid State Mater. Sci. 13 28
[39] Hassan M A and Hogarth C A 1988 J. Mater. Sci. 23 2500
[40] Spackman P R, Turner M J, McKinnon J J, Wolff S K, Grimwood D J, Jayatilaka D and Spackman M A 2021 J. Appl. Crystal. 54 3
[41] Chavez-Urias I F, López-González L E. Plascencia-Martínez D F, García J J, Flores-Alamo M, Sugich-Miranda R, Medrano F, Picos- Corrales L A, López-Gastélum K-A, Velázquez-Contreras E F and Rocha-Alonzo F 2023 ACS Omega 8 24601
[42] Al-Sulami A I, Alsuwat M H, AlSulami F M H, Ibrahim A M and Elhenawy A A 2024 Colloid. Surface A 687 133408
[43] Shukla R, Mohan T P, Vishalakshic B and Chopra D 2014 Cryst. Eng. Comm. 16 1702
[44] Broeck V A, Lotz C, Ortiz J and Lamour V 2019 Nat. Commun. 10 1
[1] Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia
Yundong Tang(汤云东), Ming Chen(陈鸣), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(9): 094401.
[2] Nitrogen-tailored quasiparticle energy gaps of polyynes
Kan Zhang(张侃), Jiling Li(李继玲), Peitao Liu(刘培涛), Guowei Yang(杨国伟), and Lei Shi(石磊). Chin. Phys. B, 2022, 31(12): 123102.
[3] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[4] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友). Chin. Phys. B, 2021, 30(1): 018703.
[5] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[6] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[7] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[8] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[9] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[10] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[11] Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction
Xiao-Heng Yan(闫孝姮), Ying Zhang(张莹), Guo-Qiang Liu(刘国强). Chin. Phys. B, 2018, 27(10): 104302.
[12] Two-dimensional topological insulators with large bulk energy gap
Z Q Yang(杨中强), Jin-Feng Jia(贾金锋), Dong Qian(钱冬). Chin. Phys. B, 2016, 25(11): 117312.
[13] Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder
E Mehran, S Farjami Shayesteh, M Sheykhan. Chin. Phys. B, 2016, 25(10): 107504.
[14] Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles
Qiu Qing-Wei (邱庆伟), Xu Xiao-Wen (徐晓文), He Mang (何芒), Zhang Hong-Wang (张洪旺). Chin. Phys. B, 2015, 24(6): 067503.
[15] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
No Suggested Reading articles found!