|
Abstract The prediction of protein-protein complex structures is crucial for fundamental understanding of celluar processes and drug design. Despite significant progresses in the field, the accuracy of ab initio docking without using any experimental restraints remains relatively low. With the rapid advancement of structural biology, more and more information about binding can be derived from experimental data such as NMR experiments or chemical cross-linking. In addition, information about the residue contacts between proteins may also be derived from their sequences by using evolutionary analysis or deep learning. Here, we propose an efficient approach to incorporate interface residue restraints into protein-protein docking, which is named as HDOCKsite. Extensive evaluations on the protein-protein docking benchmark 4.0 showed that HDOCKsite significantly improved the docking performance and obtained a much higher success rate in binding mode predictions than original ab initio docking.
|
Received: 21 July 2020
Revised: 23 September 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
87.15.km
|
(Protein-protein interactions)
|
|
87.50.cf
|
(Biophysical mechanisms of interaction)
|
|
05.20.-y
|
(Classical statistical mechanics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 31670724) and the Startup Grant of Huazhong University of Science and Technology. |
Corresponding Authors:
†Corresponding author. E-mail: huangsy@hust.edu.cn
|
Cite this article:
Hao Li(李豪) and Sheng-You Huang(黄胜友) Protein-protein docking with interface residue restraints 2021 Chin. Phys. B 30 018703
|
1 Dame R T, Rashid F Z M and Grainger D C Nat. Rev. Genet. 21 227 2 Cossar P J, Lewis P J and McCluskey A 2020 Med. Res. Rev. 40 469 3 Clague M J, Urbe S and Komander D Nat. Rev. Mol. Cell Biol. 20 338 4 Xiong G, Xi K, Zhang X and Tan Z J 2018 Chin. Phys. B 27 018203 5 Yang Z W, Hao D X, Che Y Z, Yang J H, Zhang L and Zhang S L 2018 Chin. Phys. B 27 018704 6 Yang W and Lai L H Chin. Phys. B 25 018702 7 Zhang H Y, Tang L Q, Meng L, Nie J C, Ning T Y, Liu W M, Sun J Y and Wang P F Chin. Phys. B 21 020601 8 Jones S and Thornton J M Proc. Natl. Acad. Sci. USA 93 13 9 Alberts B Cell 92 291 10 Huang S Y Drug Discov. Today 20 969 11 Vakser I A Biophys 107 1785 12 Sandor V, David R H and Dima K 2013 Proteins 81 1874 13 Koukos P I and Bonvin A M J J J. Mol. Biol. 432 2861 14 Yan Y M, Zhang D, Zhou P, Li B T and Huang S Y Nucleic Acids Res. 45 W365 15 Yan Y M, Tao H Y, He J H and Huang S Y Nat. Protoc. 15 1829 16 Yu J C, Vavrusa M, Andreani J, Rey J, Tuffery P and Guerois R Nucleic Acids Res. 44 W542 17 Yan Y M, Wen Z Y, Wang X X and Huang S Y 2017 Proteins 85 497 18 Ephraim K K, Isaac S, Miriam E, Asher A F, Claude A and Ilya A V Proc. Natl Acad. Sci. USA 89 2195 19 Henry A G, Richard M J and Michael J E S J. Mol. Biol. 272 106 20 Ilya A V 1997 Proteins 29 (Suppl.1) 226 21 Mandell J G, Roberts V A, Pique M E, Kotlovyi V, Mitchell, J C, Nelson E, Tsigelny I and Ten E L F Protein Eng. 14 105 https://www.scopus.com/record/display.uri?eid=2-s2.0-0035040480&origin=inward2001 22 Roberts V A, Thompson E E, Pique M E, Perez M S and Ten E L F 2013 J. Comput. Chem. 34 1743 23 Chen R and Weng Z P 2002 Proteins 47 281-294 24 Chen R and Weng Z P 2003 Proteins 51 397 25 Chen R, Li L and Weng Z P 2003 Proteins 52 80 26 Mintseris J, Pierce B G, Wiehe K, Anderson R, Chen R and Weng Z P 2007 Proteins 69 511 27 Pierce B G, Hourai Y and Weng Z P 2011 PLoS ONE 6 e24657 28 Alexander H, Ephraim K K and Miriam E 2002 Protein Sci. 11 571 29 Alexander B, Boaz S and Miriam E 2004 Proteins 56 130 30 Dima K, Ryan B, Stephen R C and Sandor V 2006 Proteins 65 392 31 Chandrajit L B, Rezaul C and Vinay S Trans. Comput. Biol. Bioinform. 8 45 32 Zhang C S and Lai L H 2011 J. Comput. Chem. 32 2598 33 Huang S Y and Zou X Q 2010 Proteins 78 3096 34 David W R and Graham J L K 2000 Proteins 39 178 35 Jose I G, Jose R L B, Carles P, Julio K, Ruben A, Juan F R and Pablo C Bioinformatics 25 2544 36 Cyril D, Rolf B and Alexandre M J J B 2003 J. Am. Chem. Soc. 125 1731 37 Sjoerd J D V, Marc V D and Alexandre M J J B 2010 Nat. Protoc. 5 883 38 Van G C P Z, Rodrigues J P G L M, Trellet M, Schmitz C, Kastritis P L, Karaca E, Melquiond A S J, Dijk M V, Sjoerd J D V, Alexandre M J J B J. Mol. Biol. 428 720 39 Dima K, David R H, Bing X, Kathryn A P, Dzmitry P, Christine Y, Dmitri B and Sandor V 2017 Nat. Protoc. 12 255 40 Yan Y M, He J H, Feng Y Y, Lin P C, Tao H T and Huang S Y 2020 Proteins 88 1055 41 Benjamin R D, Hans S, Kristian S and Stefan H K Nucleic Acids Res. 47 6504 42 Thomas A H, Charlotta P I S, Joao P G L M R, Anna G G, Oliver K, Chris S, Alexandre M J J B and Debora S M Elife 3 e03430 43 Zeng H, Wang S, Zhou T M, Zhao F F, Li X F, Wu Q and Xu J B Nucleic Acids Res. 46 W432 44 Yan Y M and Huang S Y 2019 BMC Bioinformatics 20 696 45 Yan Y M, Tao H Y and Huang S Y Nucleic Acids Res. 46 W443 46 Yan Y M and Huang S Y 2019 Biophysics Reports 5 65 47 Huang S Y and Zou X Q 2008 Proteins 72 557 48 Huang S Y and Zou X Q Nucleic Acids Research 42 e55 49 Wang X X and Huang S Y 2018 Chin. Phys. B 27 020503 50 Huang S Y and Zou X Q 2011 J. Chem. Inf. Model. 51 2097 51 Sergey O, Hetunandan K and Daivd B Elife 3 e02030 52 Joel Janin, Kim H, John Moult, Lynn T E, Michael J E S, Sander V, Ilya V and Shoshana J W 2003 Proteins 52 2 53 Raul M, Raphael L, Marc F L and Shoshana J W 2005 Proteins 60 150 54 Marc F L, Rual M, Shoshana J W 2007 Proteins 69 704 55 Marc F L and Shoshana J W 2010 Proteins 78 3085 56 Marc F L and Shoshana J W 2013 Proteins 81 2082 57 Marc F L, Sameer V and Shoshana J W 2017 Proteins 85 359 58 Marc F L, Sameer V, Minkyung B, Lim H, Chaok S and Shoshana J W 2018 Proteins 86 (suppl. 1) 257 59 Hwang H, Vreven T, Janin J and Weng Z P 2010 Proteins 78 3111 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|