Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018703    DOI: 10.1088/1674-1056/abc14e
Special Issue: SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
SPECIAL TOPIC—Modeling and simulations for the structures and functions of proteins and nucleic acids Prev   Next  

Protein-protein docking with interface residue restraints

Hao Li(李豪) and Sheng-You Huang(黄胜友)†
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  The prediction of protein-protein complex structures is crucial for fundamental understanding of celluar processes and drug design. Despite significant progresses in the field, the accuracy of ab initio docking without using any experimental restraints remains relatively low. With the rapid advancement of structural biology, more and more information about binding can be derived from experimental data such as NMR experiments or chemical cross-linking. In addition, information about the residue contacts between proteins may also be derived from their sequences by using evolutionary analysis or deep learning. Here, we propose an efficient approach to incorporate interface residue restraints into protein-protein docking, which is named as HDOCKsite. Extensive evaluations on the protein-protein docking benchmark 4.0 showed that HDOCKsite significantly improved the docking performance and obtained a much higher success rate in binding mode predictions than original ab initio docking.
Keywords:  protein-protein interaction      scoring function      residue restraint      molecular docking  
Received:  21 July 2020      Revised:  23 September 2020      Accepted manuscript online:  15 October 2020
PACS:  87.15.km (Protein-protein interactions)  
  87.50.cf (Biophysical mechanisms of interaction)  
  05.20.-y (Classical statistical mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 31670724) and the Startup Grant of Huazhong University of Science and Technology.
Corresponding Authors:  Corresponding author. E-mail: huangsy@hust.edu.cn   

Cite this article: 

Hao Li(李豪) and Sheng-You Huang(黄胜友) Protein-protein docking with interface residue restraints 2021 Chin. Phys. B 30 018703

1 Dame R T, Rashid F Z M and Grainger D C Nat. Rev. Genet. 21 227
2 Cossar P J, Lewis P J and McCluskey A 2020 Med. Res. Rev. 40 469
3 Clague M J, Urbe S and Komander D Nat. Rev. Mol. Cell Biol. 20 338
4 Xiong G, Xi K, Zhang X and Tan Z J 2018 Chin. Phys. B 27 018203
5 Yang Z W, Hao D X, Che Y Z, Yang J H, Zhang L and Zhang S L 2018 Chin. Phys. B 27 018704
6 Yang W and Lai L H Chin. Phys. B 25 018702
7 Zhang H Y, Tang L Q, Meng L, Nie J C, Ning T Y, Liu W M, Sun J Y and Wang P F Chin. Phys. B 21 020601
8 Jones S and Thornton J M Proc. Natl. Acad. Sci. USA 93 13
9 Alberts B Cell 92 291
10 Huang S Y Drug Discov. Today 20 969
11 Vakser I A Biophys 107 1785
12 Sandor V, David R H and Dima K 2013 Proteins 81 1874
13 Koukos P I and Bonvin A M J J J. Mol. Biol. 432 2861
14 Yan Y M, Zhang D, Zhou P, Li B T and Huang S Y Nucleic Acids Res. 45 W365
15 Yan Y M, Tao H Y, He J H and Huang S Y Nat. Protoc. 15 1829
16 Yu J C, Vavrusa M, Andreani J, Rey J, Tuffery P and Guerois R Nucleic Acids Res. 44 W542
17 Yan Y M, Wen Z Y, Wang X X and Huang S Y 2017 Proteins 85 497
18 Ephraim K K, Isaac S, Miriam E, Asher A F, Claude A and Ilya A V Proc. Natl Acad. Sci. USA 89 2195
19 Henry A G, Richard M J and Michael J E S J. Mol. Biol. 272 106
20 Ilya A V 1997 Proteins 29 (Suppl.1) 226
21 Mandell J G, Roberts V A, Pique M E, Kotlovyi V, Mitchell, J C, Nelson E, Tsigelny I and Ten E L F Protein Eng. 14 105 https://www.scopus.com/record/display.uri?eid=2-s2.0-0035040480&origin=inward2001
22 Roberts V A, Thompson E E, Pique M E, Perez M S and Ten E L F 2013 J. Comput. Chem. 34 1743
23 Chen R and Weng Z P 2002 Proteins 47 281-294
24 Chen R and Weng Z P 2003 Proteins 51 397
25 Chen R, Li L and Weng Z P 2003 Proteins 52 80
26 Mintseris J, Pierce B G, Wiehe K, Anderson R, Chen R and Weng Z P 2007 Proteins 69 511
27 Pierce B G, Hourai Y and Weng Z P 2011 PLoS ONE 6 e24657
28 Alexander H, Ephraim K K and Miriam E 2002 Protein Sci. 11 571
29 Alexander B, Boaz S and Miriam E 2004 Proteins 56 130
30 Dima K, Ryan B, Stephen R C and Sandor V 2006 Proteins 65 392
31 Chandrajit L B, Rezaul C and Vinay S Trans. Comput. Biol. Bioinform. 8 45
32 Zhang C S and Lai L H 2011 J. Comput. Chem. 32 2598
33 Huang S Y and Zou X Q 2010 Proteins 78 3096
34 David W R and Graham J L K 2000 Proteins 39 178
35 Jose I G, Jose R L B, Carles P, Julio K, Ruben A, Juan F R and Pablo C Bioinformatics 25 2544
36 Cyril D, Rolf B and Alexandre M J J B 2003 J. Am. Chem. Soc. 125 1731
37 Sjoerd J D V, Marc V D and Alexandre M J J B 2010 Nat. Protoc. 5 883
38 Van G C P Z, Rodrigues J P G L M, Trellet M, Schmitz C, Kastritis P L, Karaca E, Melquiond A S J, Dijk M V, Sjoerd J D V, Alexandre M J J B J. Mol. Biol. 428 720
39 Dima K, David R H, Bing X, Kathryn A P, Dzmitry P, Christine Y, Dmitri B and Sandor V 2017 Nat. Protoc. 12 255
40 Yan Y M, He J H, Feng Y Y, Lin P C, Tao H T and Huang S Y 2020 Proteins 88 1055
41 Benjamin R D, Hans S, Kristian S and Stefan H K Nucleic Acids Res. 47 6504
42 Thomas A H, Charlotta P I S, Joao P G L M R, Anna G G, Oliver K, Chris S, Alexandre M J J B and Debora S M Elife 3 e03430
43 Zeng H, Wang S, Zhou T M, Zhao F F, Li X F, Wu Q and Xu J B Nucleic Acids Res. 46 W432
44 Yan Y M and Huang S Y 2019 BMC Bioinformatics 20 696
45 Yan Y M, Tao H Y and Huang S Y Nucleic Acids Res. 46 W443
46 Yan Y M and Huang S Y 2019 Biophysics Reports 5 65
47 Huang S Y and Zou X Q 2008 Proteins 72 557
48 Huang S Y and Zou X Q Nucleic Acids Research 42 e55
49 Wang X X and Huang S Y 2018 Chin. Phys. B 27 020503
50 Huang S Y and Zou X Q 2011 J. Chem. Inf. Model. 51 2097
51 Sergey O, Hetunandan K and Daivd B Elife 3 e02030
52 Joel Janin, Kim H, John Moult, Lynn T E, Michael J E S, Sander V, Ilya V and Shoshana J W 2003 Proteins 52 2
53 Raul M, Raphael L, Marc F L and Shoshana J W 2005 Proteins 60 150
54 Marc F L, Rual M, Shoshana J W 2007 Proteins 69 704
55 Marc F L and Shoshana J W 2010 Proteins 78 3085
56 Marc F L and Shoshana J W 2013 Proteins 81 2082
57 Marc F L, Sameer V and Shoshana J W 2017 Proteins 85 359
58 Marc F L, Sameer V, Minkyung B, Lim H, Chaok S and Shoshana J W 2018 Proteins 86 (suppl. 1) 257
59 Hwang H, Vreven T, Janin J and Weng Z P 2010 Proteins 78 3111
[1] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[2] Review of multimer protein–protein interaction complex topology and structure prediction
Daiwen Sun(孙黛雯), Shijie Liu(刘世婕), and Xinqi Gong(龚新奇)†. Chin. Phys. B, 2020, 29(10): 108707.
[3] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
[4] Computational design of proteins with novel structure and functions
Wei Yang(杨为) and Lu-Hua Lai(来鲁华). Chin. Phys. B, 2016, 25(1): 018702.
No Suggested Reading articles found!