Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100201    DOI: 10.1088/1674-1056/add50c
GENERAL   Next  

An epidemic model considering multiple factors based on multilayer hypernetworks

Yue-Yue Zheng(郑月月)1, Zhi-Ping Wang(王志平)1,†, Ya-Nan Sun(孙雅楠)1, Shi-Jie Xie(谢仕杰)1, and Lin Wang(王琳)2,‡
1 School of Science, Dalian Maritime University, Dalian 116026, China;
2 Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
Abstract  The outbreak of COVID-19 in 2019 has made people pay more attention to infectious diseases. In order to reduce the risk of infection and prevent the spread of infectious diseases, it is crucial to strengthen individual immunization measures and to restrain the diffusion of negative information relevant to vaccines at the opportune moment. This study develops a three-layer coupling model within the framework of hypernetwork evolution, examining the interplay among negative information, immune behavior, and epidemic propagation. Firstly, the dynamic topology evolution process of hypernetwork includes node joining, aging out, hyperedge adding and reconnecting. The three-layer communication model accounts for the multifaceted influences exerted by official media channels, subjective psychological acceptance capabilities, self-identification abilities, and physical fitness levels. Each level of the decision-making process is described using the Heaviside step function. Secondly, the dynamics equations of each state and the prevalence threshold are derived using the microscopic Markov chain approach (MMCA). The results show that the epidemic threshold is affected by three transmission processes. Finally, through the simulation testing, it is possible to enhance the intensity of official clarification, improve individual self-identification ability and physical fitness, and thereby promote the overall physical enhancement of society. This, in turn, is beneficial in controlling false information, heightening vaccination coverage, and controlling the epidemic.
Keywords:  multilayer hypernetworks      information diffusion      immunization behavior      epidemic spreading  
Received:  03 April 2025      Revised:  04 May 2025      Accepted manuscript online:  07 May 2025
PACS:  02.50.Ga (Markov processes)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
  87.23.Kg (Dynamics of evolution)  
  64.60.aq (Networks)  
Corresponding Authors:  Zhi-Ping Wang, Lin Wang     E-mail:  wzp@dlmu.edu.cn;1015132938@qq.com

Cite this article: 

Yue-Yue Zheng(郑月月), Zhi-Ping Wang(王志平), Ya-Nan Sun(孙雅楠), Shi-Jie Xie(谢仕杰), and Lin Wang(王琳) An epidemic model considering multiple factors based on multilayer hypernetworks 2025 Chin. Phys. B 34 100201

[1] Jones K E, Patel N G, Levy M A, Storeygard A, Balk D, Gittleman J L and Daszak P 2008 Nature 451 990
[2] Chala B and Hamde F 2021 Frontiers in Public Health 9 715759
[3] Pertwee E, Simas C and Larson H J 2022 Nat. Med. 28 456
[4] Apetrei C, Marx P A, Mellors JWand Pandrea I 2022 Trends Microbiol 30 948
[5] Kermack W O and McKendrick A G 1927 Proc. R. Soc. Lond. A 115 700
[6] Kermack W O and McKendrick A G 1991 Bull. Math. Biol. 53 89
[7] Wang Z S, Guo Q T, Sun S W and Xia C Y 2019 Appl. Math. Comput. 349 134
[8] Wang Z S, Xia C Y, Chen Z Q and Chen G R 2021 IEEE Trans. Cybern. 51 1454
[9] Xia C Y, Wang Z S, Zheng C Y, Guo Q T, Shi Y T, Dehmer M and Chen Z Q 2019 Inf. Sci. 471 185
[10] Huo L A and Wu B J 2024 Chin. Phys. B 33 038702
[11] Li B X and Zhu L H 2024 Information Processing & Management 61 103621
[12] Huang H, Chen Y H and Ma Y F 2021 Appl. Math. Comput. 388 125536
[13] Zhou H, Ma Y H, Chen H Z and You X M 2024 Commun. Nonlinear Sci. Numer. Simul. 130 107764
[14] Li D D, Xie W J and Han D 2024 Appl. Math. Comput. 474 128700
[15] Kabir K M A and Tanimoto J 2019 Commun. Nonlinear Sci. Numer. Simul. 76 92
[16] Lau J T F, Yeung N C Y, Choi K C, Cheng M Y M, Tsui H Y and Griffiths S 2009 The BMJ 339 b4164
[17] Wang J W, Xu W S, Chen W, Yu F Y and He J L 2021 Physica -Stat. Mech. ITS Appl. 583 126281
[18] Zhang Y 2013 Chaos, Solitons and Fractals 56 209
[19] Liu Y A and Wu B 2022 Phys. Rev. E 106 034308
[20] Jovanovic R, Davidovic M, Lazovic I, Jovanovic M and Jovasevic- Stojanovic M 2021 Int. J. Environ. Res. Public. Health 18 6217
[21] Meng X Y, Han S J, Wu L L, Si S B and Cai Z Q 2022 Reliab. Eng. Syst. Saf. 219 108256
[22] Liu Y Y, Sanhedrai H, Dong G G, Shekhtman L M, Wang F, Buldyrev S V and Havlin S 2021 Natl. Sci. Rev. 8 nwaa229
[23] Li L, Dong G G, Zhu H P and Tian L X 2024 Appl. Math. Comput. 472 128617
[24] Li C, Dai J Y and Li X 2024 IEEE Trans. Comput. Soc. Syst. 11 2369
[25] Meng X Y, Lin J H, Fan Y F, Gao F J, Fenoaltea E M, Cai Z Q and Si S B 2023 Chaos, Solitons and Fractals 169 113294
[26] Feng M Y, Li X X, Li Y H and Li Q 2023 Chaos 33 043112
[27] Guo H L, Yin Q, Xia C Y and Dehmer M 2021 Nonlinear Dyn. 105 3819
[28] Li C, Zhang Y A and Li X 2021 IEEE Trans. Netw. Sci. Eng. 8 814
[29] Sha H Y and Zhu L H 2025 Information Processing & Management 62 104016
[30] Wu B J and Huo L A 2024 Chaos, Solitons and Fractals 180 114522
[31] Okita K, Tatsukawa Y, Utsumi S, Arefin M R, Hossain M A and Tanimoto J 2023 Chaos, Solitons and Fractals 167 113029
[32] Yang P, Fan R G, Wang Y B and Zhang Y Q 2024 Chin. Phys. B 33 070206
[33] Volpentesta A P 2008 Eur. J. Oper. Res. 188 390
[34] Wang J W, Rong L L, Deng Q H and Zhang J Y 2010 Eur. Phys. J. B 77 493
[35] Gong Y C, Wang M, Liang W, Hu F and Zhang Z K 2023 Inf. Sci. 644 119284
[36] Wang J, Wang Z P, Yu P and Wang P W 2022 Sustainability 14 13036
[37] Xie S J, Wang P W, Wang Z P and Zheng Y Y 2025 IJICIC 21 617
[38] Huo L A and Yu Y 2023 Chaos, Solitons and Fractals 169 113229
[39] Guo J L, Zhu X Y, Suo Q and Forrest J 2016 Sci. Rep. 6 36648
[40] Yin Q, Wang Z S, Xia C Y and Bauch C T 2022 Commun. Nonlinear Sci. Numer. Simul. 109 106312
[41] Zhao Y N and Jiang D Q 2014 Appl. Math. Comput. 243 718
[42] Lv S, Wang Y, Guo C and Zhang L B 2024 Nonlinear Dyn. 112 2367
[43] Yu P, Wang Z P, Sun Y N and Wang P W 2022 Mathematics 10 4344
[44] Zhu L H, Ding Y and Shen S L 2025 Mathematical Biosciences 379 109340
[45] Zhang J and Wang N 2024 Expert Systems with Applications 249 123725
[46] Liu C, Guo M N, Chai Z L, Xin Z, Chen G J, Zimmet P Z and Yang J K 2023 Diabetes Research and Clinical Practice 201 110723
[1] Influence of negative information dissemination and vaccination behavioral decision-making on epidemic spreading in a three-layer network
Liang’an Huo(霍良安) and Leyao Yin(尹乐瑶). Chin. Phys. B, 2025, 34(6): 068902.
[2] Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
Xiongding Liu(柳雄顶), Xiaodan Zhao(赵晓丹), Xiaojing Zhong(钟晓静), and Wu Wei(魏武). Chin. Phys. B, 2025, 34(6): 060203.
[3] Vital nodes identification method integrating degree centrality and cycle ratio
Yu Zhao(赵玉) and Bo Yang(杨波). Chin. Phys. B, 2025, 34(3): 038901.
[4] Individual dynamics and local heterogeneity provide a microscopic view of the epidemic spreading
Youyuan Zhu(朱友源), Ruizhe Shen(沈瑞哲), Hao Dong(董昊), and Wei Wang(王炜). Chin. Phys. B, 2024, 33(5): 058301.
[5] Studying the co-evolution of information diffusion, vaccination behavior and disease transmission in multilayer networks with local and global effects
Liang'an Huo(霍良安) and Bingjie Wu(武兵杰). Chin. Phys. B, 2024, 33(3): 038702.
[6] Dynamics of information diffusion and disease transmission in time-varying multiplex networks with asymmetric activity levels
Xiao-Xiao Xie(谢笑笑), Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ying-Ying Cheng(程英英). Chin. Phys. B, 2024, 33(3): 038704.
[7] Impact of environmental factors on the coevolution of information-emotions-epidemic dynamics in activity-driven multiplex networks
Liang'an Huo(霍良安), Bingjie Liu(刘炳杰), and Xiaomin Zhao(赵晓敏). Chin. Phys. B, 2024, 33(12): 128903.
[8] Intervention against information diffusion in static and temporal coupling networks
Yun Chai(柴允), You-Guo Wang(王友国), Jun Yan(颜俊), and Xian-Li Sun(孙先莉). Chin. Phys. B, 2023, 32(9): 090202.
[9] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[10] Asynchronism of the spreading dynamics underlying the bursty pattern
Tong Wang(王童), Ming-Yang Zhou(周明洋), Zhong-Qian Fu(付忠谦). Chin. Phys. B, 2020, 29(5): 058901.
[11] Reverse-feeding effect of epidemic by propagators in two-layered networks
Dayu Wu(吴大宇), Yanping Zhao(赵艳萍), Muhua Zheng(郑木华), Jie Zhou(周杰), Zonghua Liu(刘宗华). Chin. Phys. B, 2016, 25(2): 028701.
[12] Epidemic spreading on random surfer networks with infected avoidance strategy
Yun Feng(冯运), Li Ding(丁李), Yun-Han Huang(黄蕴涵), Zhi-Hong Guan(关治洪). Chin. Phys. B, 2016, 25(12): 128903.
[13] Subtle role of latency for information diffusion in online social networks
Fei Xiong(熊菲), Xi-Meng Wang(王夕萌), Jun-Jun Cheng(程军军). Chin. Phys. B, 2016, 25(10): 108904.
[14] Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness
Li Ke-Zan (李科赞), Xu Zhong-Pu (徐忠朴), Zhu Guang-Hu (祝光湖), Ding Yong (丁勇). Chin. Phys. B, 2014, 23(11): 118904.
[15] Effect of incubation period on epidemic spreading in complex networks
Huang Wei(黄炜), Jiang Rui(姜锐), Hu Mao-Bin(胡茂彬), and Wu Qing-Song(吴清松). Chin. Phys. B, 2009, 18(4): 1306-1311.
No Suggested Reading articles found!