| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Density-driven segregation of binary granular mixtures in a vertically vibrating drum: The role of filling fraction |
| Anghao Li(李昂昊), Zaizheng Wang(王在政), Haoyu Shi(史浩瑜), Min Sun(孙敏), and Decai Huang(黄德财)† |
| Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
|
|
Abstract This paper investigates the influence of filling fraction on the segregation patterns of binary granular mixtures in a vertically vibrating drum through experiments and simulations. Glass and stainless steel spherical grains, which differ in mass density, are used to give rise to density-driven segregation. The results reveal four segregation patterns, including Brazil nut effect segregation, counterclockwise two-eye-like segregation, dumpling-like segregation and clockwise two-eye-like segregation. The theoretical analysis demonstrates that grains predominantly exhibit counterclockwise convection at low filling fractions, while clockwise convection dominates at high filling fractions. Competition between buoyancy and convection forces determines the final stable segregation pattern. These findings provide valuable insights into controlling segregation in granular systems, which is crucial for optimizing industrial processes in fields such as pharmaceuticals and chemical engineering.
|
Received: 12 April 2025
Revised: 03 May 2025
Accepted manuscript online: 04 June 2025
|
|
PACS:
|
45.70.-n
|
(Granular systems)
|
| |
47.57.Gc
|
(Granular flow)
|
| |
45.70.Mg
|
(Granular flow: mixing, segregation and stratification)
|
| |
75.40.Mg
|
(Numerical simulation studies)
|
|
| Fund: This work is financially supported by the National Natural Science Foundation of China (Grant No. 11574153) and the Fund of No. TSXK2022D007. |
Corresponding Authors:
Decai Huang
E-mail: hdc@njust.edu.cn
|
Cite this article:
Anghao Li(李昂昊), Zaizheng Wang(王在政), Haoyu Shi(史浩瑜), Min Sun(孙敏), and Decai Huang(黄德财) Density-driven segregation of binary granular mixtures in a vertically vibrating drum: The role of filling fraction 2025 Chin. Phys. B 34 104501
|
[1] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259 [2] Aranson I S and Tsimring L S 2006 Rev. Mod. Phys. 78 641 [3] Gray J 2018 Annu. Rev. Fluid Mech. 50 407 [4] Guo Y and Curtis J S 2015 Annu. Rev. Fluid Mech. 47 21 [5] Houssais M, Ortiz C P, Durian D J and Jerolmack D J 2015 Nat. Commun. 6 6527 [6] Li C H, Li X, Chen X G, Wang Z X, Sun M and Huang D C 2024 AIChE J. 70 e18583 [7] Li C H, Li X, Jiao T F, Hu F L, Sun M and Huang D C 2022 Powder Technol. 401 117271 [8] Li Y C, Liu R and Hou M Y 2012 Phys. Rev. Lett. 109 198001 [9] Shao Y F, Li A H, Wang Z Z, Sun M and Huang D C 2023 AIChE J. 69 e18101 [10] Fry A M, Umbanhowar P B, Ottino J M and Lueptow R M 2018 Phys. Rev. E 97 062906 [11] Yu Q C, Zhen N and Shi Q F 2021 Phys. Rev. E 103 052901 [12] de Munck M J A, Dullemond M, Peters E A J F and Kuipers J A M 2023 Chem. Eng. J. 465 142756 [13] Beaulieu C, Vidal D, Bertrand F and Chaouki J 2021 Chem. Eng. J. 409 128039 [14] Fan F X, Parteli E J R and Pöschel T 2017 Phys. Rev. Lett. 118 128039 [15] Jiang M, Wu P, Chen X, Fu H, Qiu N, Wang L and Dong C 2021 Powder Technol. 387 205 [16] Breu A P J, Ensner H M, Kruelle C A and Rehberg I 2003 Phys. Rev. Lett. 90 014302 [17] Hong D C, Quinn P V and Luding S 2001 Phys. Rev. Lett. 86 3423 [18] Schröter M, Ulrich S, Kreft J, Swift J B and Swinney H 2006 Phys. Rev. E 74 011307 [19] Duan Y F, Umbanhowar P B, Ottino J M and Lueptow R M 2020 Phys. Rev. Fluids 5 044301 [20] Shi Q, Sun G, Hou M and Lu K 2007 Phys. Rev. E 75 061302 [21] Arifuzzaman S M, Dong K J, Zhu H P and Zeng Q H 2022 Adv. Powder Technol. 33 103551 [22] Hou M Y, Tu H G, Liu R, Li Y C, Lu K Q, Lai P Y and Chan C K 2008 Phys. Rev. Lett. 100 068001 [23] Jones R P, Ottino J M, Umbanhowar P B and Lueptow R M 2021 Phys. Rev. Fluids 6 054301 [24] Umbanhowar P B, Lueptow R M and Ottino J M 2019 Annu. Rev. Chem. Biomol. Eng. 10 129 [25] OshtorjaniMK, Meng L andMüller C R 2021 Phys. Rev. E 103 062903 [26] Li Z F, Zeng Z K, Xing Y, Li J D, Zheng J, Mao Q H, Zhang J, Hou M Y and Wang Y J 2021 Sci. Adv. 7 eabe8737 [27] Schnautz T, Brito R, Kruelle C A and Rehberg I 2005 Phys. Rev. Lett. 95 028001 [28] Du S S, Shi Q F, Sun G, Li L S and Zheng N 2011 Phys. Rev. E 84 041307 [29] Cai H and Miao G Q 2020 Phys. Rev. E 101 032902 [30] Neveu A, Larcher M, Delannay R, Jenkins J T and Valance A 2022 Fluid Mech. 935 A41 [31] Larcher M and Jenkins J T 2015 Fluid Mech. 782 405 [32] Woodhouse M J, Thornton A R, Johnson C G, Kokelaar B P and Gray J M N T 2012 Fluid Mech. 709 543 [33] Chou S H, Sheng L T, Huang W J and Hsiau S S 2020 Adv. Powder Technol. 31 94 [34] Huang D C, Lu M, Sen S, Sun M, Feng Y D and Yang A N 2013 Eur. Phys. J. E 36 41 [35] Huang D C, Lu M, Sun G, Feng Y D, Sun M, Wu H P and Deng K M 2012 Phys. Rev. E 85 031305 [36] Zhong J, Wang D P and Sun C 2023 Fluid Mech. 972 A29 [37] Yachai T, Preechawuttipong I, Jongchansitto P and Balandraud X 2024 Adv. Powder Tech. 35 104455 [38] Yang S C and Hsiau S S 2000 Chem. Eng. Sci. 5 3627 [39] Windows-Yule C R K, Rivas N and Parker D J 2013 Phys. Rev. Lett. 111 038001 [40] Ramírez R, Risso D and Cordero P 2000 Phys. Rev. Lett. 85 1230 [41] Pontuale G, Gnoli A, Reyes F V and Puglisi A 2016 Phys. Rev. Lett. 117 098006 [42] Aoki K M, Akiyama T, Maki Y and Watanabe T 1996 Phys. Rev. E 54 874 [43] Jiang M X, Wu P, Chen B, Gao J, Wang L, Dong C Y and Ding Y L 2023 Mech. Sci. 255 108472 [44] Hsiau S S, Wang P C and Tai C H 2002 AIChE J. 54 1430 [45] Zeilstra C, Collignon J G, van der Hoef M A, Deen N G and Kuipers J A M 2008 Powder Technol. 184 166 [46] Cundall P A and Strack O D L 1979 Géotechnique 29 47 [47] Schäfer J, Dippel S and Wolf D E 1996 Phys. I France 6 5 [48] Huang D C, Sun G and Lu K Q 2006 Phys. Rev. E 74 061301 [49] Pöschel T, Schwager T and Salueña C 2000 Phys. Rev. E 62 1361 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|