Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 104501    DOI: 10.1088/1674-1056/ade070
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Density-driven segregation of binary granular mixtures in a vertically vibrating drum: The role of filling fraction

Anghao Li(李昂昊), Zaizheng Wang(王在政), Haoyu Shi(史浩瑜), Min Sun(孙敏), and Decai Huang(黄德财)†
Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  This paper investigates the influence of filling fraction on the segregation patterns of binary granular mixtures in a vertically vibrating drum through experiments and simulations. Glass and stainless steel spherical grains, which differ in mass density, are used to give rise to density-driven segregation. The results reveal four segregation patterns, including Brazil nut effect segregation, counterclockwise two-eye-like segregation, dumpling-like segregation and clockwise two-eye-like segregation. The theoretical analysis demonstrates that grains predominantly exhibit counterclockwise convection at low filling fractions, while clockwise convection dominates at high filling fractions. Competition between buoyancy and convection forces determines the final stable segregation pattern. These findings provide valuable insights into controlling segregation in granular systems, which is crucial for optimizing industrial processes in fields such as pharmaceuticals and chemical engineering.
Keywords:  granular matter      granular flow      segregation mechanism      discrete element method (DEM)  
Received:  12 April 2025      Revised:  03 May 2025      Accepted manuscript online:  04 June 2025
PACS:  45.70.-n (Granular systems)  
  47.57.Gc (Granular flow)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  75.40.Mg (Numerical simulation studies)  
Fund: This work is financially supported by the National Natural Science Foundation of China (Grant No. 11574153) and the Fund of No. TSXK2022D007.
Corresponding Authors:  Decai Huang     E-mail:  hdc@njust.edu.cn

Cite this article: 

Anghao Li(李昂昊), Zaizheng Wang(王在政), Haoyu Shi(史浩瑜), Min Sun(孙敏), and Decai Huang(黄德财) Density-driven segregation of binary granular mixtures in a vertically vibrating drum: The role of filling fraction 2025 Chin. Phys. B 34 104501

[1] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259
[2] Aranson I S and Tsimring L S 2006 Rev. Mod. Phys. 78 641
[3] Gray J 2018 Annu. Rev. Fluid Mech. 50 407
[4] Guo Y and Curtis J S 2015 Annu. Rev. Fluid Mech. 47 21
[5] Houssais M, Ortiz C P, Durian D J and Jerolmack D J 2015 Nat. Commun. 6 6527
[6] Li C H, Li X, Chen X G, Wang Z X, Sun M and Huang D C 2024 AIChE J. 70 e18583
[7] Li C H, Li X, Jiao T F, Hu F L, Sun M and Huang D C 2022 Powder Technol. 401 117271
[8] Li Y C, Liu R and Hou M Y 2012 Phys. Rev. Lett. 109 198001
[9] Shao Y F, Li A H, Wang Z Z, Sun M and Huang D C 2023 AIChE J. 69 e18101
[10] Fry A M, Umbanhowar P B, Ottino J M and Lueptow R M 2018 Phys. Rev. E 97 062906
[11] Yu Q C, Zhen N and Shi Q F 2021 Phys. Rev. E 103 052901
[12] de Munck M J A, Dullemond M, Peters E A J F and Kuipers J A M 2023 Chem. Eng. J. 465 142756
[13] Beaulieu C, Vidal D, Bertrand F and Chaouki J 2021 Chem. Eng. J. 409 128039
[14] Fan F X, Parteli E J R and Pöschel T 2017 Phys. Rev. Lett. 118 128039
[15] Jiang M, Wu P, Chen X, Fu H, Qiu N, Wang L and Dong C 2021 Powder Technol. 387 205
[16] Breu A P J, Ensner H M, Kruelle C A and Rehberg I 2003 Phys. Rev. Lett. 90 014302
[17] Hong D C, Quinn P V and Luding S 2001 Phys. Rev. Lett. 86 3423
[18] Schröter M, Ulrich S, Kreft J, Swift J B and Swinney H 2006 Phys. Rev. E 74 011307
[19] Duan Y F, Umbanhowar P B, Ottino J M and Lueptow R M 2020 Phys. Rev. Fluids 5 044301
[20] Shi Q, Sun G, Hou M and Lu K 2007 Phys. Rev. E 75 061302
[21] Arifuzzaman S M, Dong K J, Zhu H P and Zeng Q H 2022 Adv. Powder Technol. 33 103551
[22] Hou M Y, Tu H G, Liu R, Li Y C, Lu K Q, Lai P Y and Chan C K 2008 Phys. Rev. Lett. 100 068001
[23] Jones R P, Ottino J M, Umbanhowar P B and Lueptow R M 2021 Phys. Rev. Fluids 6 054301
[24] Umbanhowar P B, Lueptow R M and Ottino J M 2019 Annu. Rev. Chem. Biomol. Eng. 10 129
[25] OshtorjaniMK, Meng L andMüller C R 2021 Phys. Rev. E 103 062903
[26] Li Z F, Zeng Z K, Xing Y, Li J D, Zheng J, Mao Q H, Zhang J, Hou M Y and Wang Y J 2021 Sci. Adv. 7 eabe8737
[27] Schnautz T, Brito R, Kruelle C A and Rehberg I 2005 Phys. Rev. Lett. 95 028001
[28] Du S S, Shi Q F, Sun G, Li L S and Zheng N 2011 Phys. Rev. E 84 041307
[29] Cai H and Miao G Q 2020 Phys. Rev. E 101 032902
[30] Neveu A, Larcher M, Delannay R, Jenkins J T and Valance A 2022 Fluid Mech. 935 A41
[31] Larcher M and Jenkins J T 2015 Fluid Mech. 782 405
[32] Woodhouse M J, Thornton A R, Johnson C G, Kokelaar B P and Gray J M N T 2012 Fluid Mech. 709 543
[33] Chou S H, Sheng L T, Huang W J and Hsiau S S 2020 Adv. Powder Technol. 31 94
[34] Huang D C, Lu M, Sen S, Sun M, Feng Y D and Yang A N 2013 Eur. Phys. J. E 36 41
[35] Huang D C, Lu M, Sun G, Feng Y D, Sun M, Wu H P and Deng K M 2012 Phys. Rev. E 85 031305
[36] Zhong J, Wang D P and Sun C 2023 Fluid Mech. 972 A29
[37] Yachai T, Preechawuttipong I, Jongchansitto P and Balandraud X 2024 Adv. Powder Tech. 35 104455
[38] Yang S C and Hsiau S S 2000 Chem. Eng. Sci. 5 3627
[39] Windows-Yule C R K, Rivas N and Parker D J 2013 Phys. Rev. Lett. 111 038001
[40] Ramírez R, Risso D and Cordero P 2000 Phys. Rev. Lett. 85 1230
[41] Pontuale G, Gnoli A, Reyes F V and Puglisi A 2016 Phys. Rev. Lett. 117 098006
[42] Aoki K M, Akiyama T, Maki Y and Watanabe T 1996 Phys. Rev. E 54 874
[43] Jiang M X, Wu P, Chen B, Gao J, Wang L, Dong C Y and Ding Y L 2023 Mech. Sci. 255 108472
[44] Hsiau S S, Wang P C and Tai C H 2002 AIChE J. 54 1430
[45] Zeilstra C, Collignon J G, van der Hoef M A, Deen N G and Kuipers J A M 2008 Powder Technol. 184 166
[46] Cundall P A and Strack O D L 1979 Géotechnique 29 47
[47] Schäfer J, Dippel S and Wolf D E 1996 Phys. I France 6 5
[48] Huang D C, Sun G and Lu K Q 2006 Phys. Rev. E 74 061301
[49] Pöschel T, Schwager T and Salueña C 2000 Phys. Rev. E 62 1361
[1] Improved particle tracking velocimetry based on level set segmentation for measuring the velocity field of granular flow
Jing-Yi Gao(高靖宜), Quan Chen(陈泉), Ran Li(李然), Ge Sun(孙歌), Tong-Tong Mu(牟彤彤), and Hui Yang(杨晖). Chin. Phys. B, 2025, 34(2): 024201.
[2] A pressure-sensitive rheological origin of high friction angles of granular matter observed in NASA-MGM project
Xiaohui Cheng(程晓辉), Shize Xiao(肖世泽), Sen Yang(杨森), Naifeng Zhao(赵乃峰), and Alex Sixie Cao. Chin. Phys. B, 2024, 33(6): 068301.
[3] Effect of granular shape on radial segregation in a two-dimensional drum
Yue Xu(徐悦), Ran Li(李然), Zhipeng Chi(迟志鹏), Wenzheng Xiu(修文正), Qicheng Sun(孙其诚), and Hui Yang(杨晖). Chin. Phys. B, 2024, 33(4): 044502.
[4] Flow and clogging in a horizontal silo with a rotary obstacle
Cong-Cong Xu(徐聪聪), Qing-Fan Shi(史庆藩), Wei Liu(刘伟), and Ning Zheng(郑宁). Chin. Phys. B, 2023, 32(4): 044701.
[5] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[6] Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect
Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Chin. Phys. B, 2023, 32(10): 104501.
[7] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[8] Discharge flow of granular particles through an orifice on a horizontal hopper: Effect of the hopper angle
Xin Wang(王欣), Hong-Wei Zhu(朱红伟), Qing-Fan Shi(史庆藩), Ning Zheng(郑宁). Chin. Phys. B, 2020, 29(4): 044502.
[9] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[10] A numerical study of contact force in competitive evacuation
Peng Lin(林鹏), Jian Ma(马剑), You-Ling Si(司有亮), Fan-Yu Wu(吴凡雨), Guo-Yuan Wang(王国元), Jian-Yu Wang(王建宇). Chin. Phys. B, 2017, 26(10): 104501.
[11] Stabilizing effect of plasma discharge on bubbling fluidized granular bed
Hu Mao-Bin (胡茂彬), Dang Sai-Chao (党赛超), Ma Qiang (马强), Xia Wei-Dong (夏维东). Chin. Phys. B, 2015, 24(7): 074502.
[12] Experimental study and analysis on the rising motion of grains in a vertically-vibrated pipe
Liu Yu (刘煜), Zhao Jun-Hong (赵俊红). Chin. Phys. B, 2015, 24(3): 034502.
[13] Effect of size polydispersity on the structural and vibrational characteristics of two-dimensional granular assemblies
Zhang Guo-Hua (张国华), Sun Qi-Cheng (孙其诚), Shi Zhi-Ping (石志萍), Feng Xu (冯旭), Gu Qiang (顾强), Jin Feng (金峰). Chin. Phys. B, 2014, 23(7): 076301.
[14] Properties of surface waves in granular media under gravity
Zheng He-Peng (郑鹤鹏). Chin. Phys. B, 2014, 23(5): 054503.
[15] Stress distribution and surface instability of an inclined granular layer
Zheng He-Peng (郑鹤鹏), Jiang Yi-Min (蒋亦民), Peng Zheng (彭政). Chin. Phys. B, 2013, 22(4): 040511.
No Suggested Reading articles found!