|
|
|
Effect of gold doping on relativistic electron beam transport in high-density plasma |
| Zi-Yan Zhang(张子彦)1,2 and Wei-Min Wang(王伟民)1,2,3,† |
1 School of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China; 2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China; 3 Key Laboratory for Laser Plasmas & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
|
|
Abstract We investigate the influence of gold doping on the transport range of a relativistic electron beam in high-density deuterium-tritium (DT) fuel, which could be encountered in the double-cone ignition laser fusion. We develop the stopping power model to include gold doping and then analyze the influence of Coulomb collision and bremsstrahlung on the electron transport range with different gold doping ratios, consistent with the Geant4 simulations. When the gold doping ratio increases from 0.5% to 30%, the transport range of a 10 MeV electron beam is decreased by 9.6% and 18.5% via the bremsstrahlung. For the 1 MeV beam, the decrease of the range becomes 0.7% and 1.0%. We also investigate the transverse broadening of the electron beam and radiated photon energy reabsorption in a spherical target. When the gold doping ratio is 2% and the beam energy is increased from 1 MeV to 5 MeV, the bremsstrahlung photons cover 2.6% to 10.3% of the total beam energy. Meanwhile, the reabsorbed photon energy is reduced from 31.6% to 8.9%.
|
Received: 25 February 2025
Revised: 22 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
52.57.Kk
|
(Fast ignition of compressed fusion fuels)
|
| |
52.20.Hv
|
(Atomic, molecular, ion, and heavy-particle collisions)
|
| |
52.65.Pp
|
(Monte Carlo methods)
|
|
| Fund: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDA25050300 and XDA25010100), the National Key R&D Program of China (Grant No. 2018YFA0404801), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 20XNLG01). |
Corresponding Authors:
Wei-Min Wang
E-mail: weiminwang1@ruc.edu.cn
|
Cite this article:
Zi-Yan Zhang(张子彦) and Wei-Min Wang(王伟民) Effect of gold doping on relativistic electron beam transport in high-density plasma 2025 Chin. Phys. B 34 075201
|
[1] Nuckolls J, Wood L, Thiessen A and Zimmerman G 1972 Nature 239 139 [2] Lindl J D, McCrory R L and Campbell E M 1992 Phys. Today 45 32 [3] Lan K, Dong Y S, Wu J F, Li Z C, Chen Y H, Cao H, Hao L, Li S and Ren G L 2021 Phys. Rev. Lett. 127 245001 [4] Li X, Dong Y S, Kang D G, Jiang W, Shen H, Kuang L Y, Zhang H S, Yang J M and Wang Q 2022 Phys. Rev. Lett. 128 195001 [5] Zhang F, Cai H B, Zhou W M, et al. 2020 Nat. Phys. 16 810 [6] Lan K 2022 Matter Radiat. Extremes 7 055701 [7] Sui Z and Lan K 2024 Matter Radiat. Extremes 9 043002 [8] Skupsky S and Lee K 1983 J. Appl. Phys. 54 3662 [9] Taylor R J, Velikovich A L, Dahlburg J P and Gardner J H 1997 Phys. Rev. Lett. 79 1861 [10] Cole A J, Kilkenny J D, Rumsby P T, Evans R G, Hooker C J and Key M H 1982 Nature 299 329 [11] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T and Tommasini R 2014 Nature 506 343 [12] Le Pape S, Berzak Hopkins L F, Divol L, et al. 2018 Phys. Rev. Lett. 120 245003 [13] Baker K L, Thomas C A, Casey D T, et al. 2018 Phys. Rev. Lett. 121 135001 [14] Abu-Shawareb H, Acree R, Adams P, et al. 2022 Phys. Rev. Lett. 129 075001 [15] Abu-Shawareb H, Acree R, Adams P, et al. 2024 Phys. Rev. Lett. 132 065102 [16] Hurricane O A, Callahan D A, Casey D T, Christopherson A R, Kritcher A L, Landen O L, Maclaren S A, Nora R, Patel P K, Ralph J, Schlossberg D, Springer P T, Young C V and Zylstra A B 2024 Phys. Rev. Lett. 132 065103 [17] Rubery M S, Rosen M D, Aybar N, et al. 2024 Phys. Rev. Lett. 132 065104 [18] Tabak M, Hammer J, Glinsky M E, KruerWL,Wilks S C,Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626 [19] MurakamiMand Nagatomo H 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 544 67 [20] Murakami M, Nagatomo H, Azechi H, Ogando F, Perlado M and Eliezer S 2006 Nucl. Fusion 46 99 [21] Azechi H, Sakaiya T, Watari T, et al. 2009 Phys. Rev. Lett. 102 235002 [22] Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, and Solodov A A 2007 Phys. Rev. Lett. 98 155001 [23] Nora R, Theobald W, Betti R, et al. 2015 Phys. Rev. Lett. 114 045001 [24] Velarde P, Ogando F, Eliezer S, Eliezer S, Martinez-val J M, Perlado J M and Murakami M 2005 Laser Part. Beams 23 43 [25] Zhang J,WangWM, Yang X H,Wu D, Ma Y Y, Jiao J L, Zhang J,Wu F Y, Yuan X H, Li Y T and Zhu J Q 2020 Phil. Trans. R. Soc. A 378 20200015 [26] Wang W M, Gibbon P, Sheng Z M and Li Y T 2015 Phys. Rev. Lett. 114 015001 [27] Zhou G, Wang W M, Li Y T and Zhang J 2022 Phys. Plasmas 29 052704 [28] Zhang T H, Wang W M, Li Y T and Zhang J 2022 Phys. Rev. E 106 055211 [29] Liu Z D, Zhong J Y, Yuan X H, et al. 2023 Chin. Phys. B 32 110702 [30] Zhu Z Y, Liu Y X, Li Y J and Zhang J 2022 Chin. Phys. B 31 105202 [31] Zhang C L, Zhang Y H, Yuan X H, et al. 2024 Chin. Phys. B 33 025201 [32] Zhu Z Y, Zhang C L, Li Y J and Zhang J 2024 Chin. Phys. B 33 065203 [33] Xie Y K, Zhang C L, Cheng Y Z and Li Y J 2024 Chin. Phys. B 33 125203 [34] Chen Z Y, Zhao K G and Li Y J 2024 Chin. Phys. B 33 115202 [35] Kodama R, Norreys P, Mima K, et al. 2001 Nature 412 798 [36] Agostinelli S, Allison J, Amako KA, et al. 2003 Nucl. Instrum. Methods Phys. Res. A 506 250 [37] Deutsch C, Furukawa H, Mima K, Murakami M and Nishihara K 1996 Phys. Rev. Lett. 77 2483 [38] Li C K and Petrasso R D 2004 Phys. Rev. E 70 067401 [39] Li C K and Petrasso R D 2006 Phys. Rev. E 73 016402 [40] Li C K and Petrasso R D 2006 Phys. Plasmas 13 056314 [41] Solodov A A and Betti R 2008 Phys. Plasmas 15 042707 [42] Atzeni S, Schiavi A and Davies J R 2009 Plasma Phys. Control. Fusion 51 015016 [43] Lewis H W 1950 Phys. Rev. 78 526 [44] Seltzer S M and Berger M J 1985 Nucl. Instrum. Methods Phys. Res. B 12 95 [45] Seltzer S M and Berger M J 1986 At Data Nucl Data Tables 35 345 [46] Strozzi D J, Tabak M, Larson D J, Divol L, Kemp A J, Bellei C, Marinak M M and Key M H 2012 Phys. Plasmas 19 072711 [47] Stephens R B, Snavely R A, Aglitskiy Y, et al. 2004 Phys. Rev. E 69 066414 [48] Sheng Z M, Sentoku Y, Mima K, Zhang J, Yu W and Meyer-ter-Vehn J 2000 Phys. Rev. Lett. 85 5340 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|