Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 075201    DOI: 10.1088/1674-1056/add4df
RAPID COMMUNICATION Prev   Next  

Effect of gold doping on relativistic electron beam transport in high-density plasma

Zi-Yan Zhang(张子彦)1,2 and Wei-Min Wang(王伟民)1,2,3,†
1 School of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China;
3 Key Laboratory for Laser Plasmas & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  We investigate the influence of gold doping on the transport range of a relativistic electron beam in high-density deuterium-tritium (DT) fuel, which could be encountered in the double-cone ignition laser fusion. We develop the stopping power model to include gold doping and then analyze the influence of Coulomb collision and bremsstrahlung on the electron transport range with different gold doping ratios, consistent with the Geant4 simulations. When the gold doping ratio increases from 0.5% to 30%, the transport range of a 10 MeV electron beam is decreased by 9.6% and 18.5% via the bremsstrahlung. For the 1 MeV beam, the decrease of the range becomes 0.7% and 1.0%. We also investigate the transverse broadening of the electron beam and radiated photon energy reabsorption in a spherical target. When the gold doping ratio is 2% and the beam energy is increased from 1 MeV to 5 MeV, the bremsstrahlung photons cover 2.6% to 10.3% of the total beam energy. Meanwhile, the reabsorbed photon energy is reduced from 31.6% to 8.9%.
Keywords:  double-cone ignition (DCI) scheme      stopping power      Geant4      bremsstrahlung  
Received:  25 February 2025      Revised:  22 April 2025      Accepted manuscript online:  07 May 2025
PACS:  52.57.Kk (Fast ignition of compressed fusion fuels)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  52.65.Pp (Monte Carlo methods)  
Fund: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDA25050300 and XDA25010100), the National Key R&D Program of China (Grant No. 2018YFA0404801), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 20XNLG01).
Corresponding Authors:  Wei-Min Wang     E-mail:  weiminwang1@ruc.edu.cn

Cite this article: 

Zi-Yan Zhang(张子彦) and Wei-Min Wang(王伟民) Effect of gold doping on relativistic electron beam transport in high-density plasma 2025 Chin. Phys. B 34 075201

[1] Nuckolls J, Wood L, Thiessen A and Zimmerman G 1972 Nature 239 139
[2] Lindl J D, McCrory R L and Campbell E M 1992 Phys. Today 45 32
[3] Lan K, Dong Y S, Wu J F, Li Z C, Chen Y H, Cao H, Hao L, Li S and Ren G L 2021 Phys. Rev. Lett. 127 245001
[4] Li X, Dong Y S, Kang D G, Jiang W, Shen H, Kuang L Y, Zhang H S, Yang J M and Wang Q 2022 Phys. Rev. Lett. 128 195001
[5] Zhang F, Cai H B, Zhou W M, et al. 2020 Nat. Phys. 16 810
[6] Lan K 2022 Matter Radiat. Extremes 7 055701
[7] Sui Z and Lan K 2024 Matter Radiat. Extremes 9 043002
[8] Skupsky S and Lee K 1983 J. Appl. Phys. 54 3662
[9] Taylor R J, Velikovich A L, Dahlburg J P and Gardner J H 1997 Phys. Rev. Lett. 79 1861
[10] Cole A J, Kilkenny J D, Rumsby P T, Evans R G, Hooker C J and Key M H 1982 Nature 299 329
[11] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T and Tommasini R 2014 Nature 506 343
[12] Le Pape S, Berzak Hopkins L F, Divol L, et al. 2018 Phys. Rev. Lett. 120 245003
[13] Baker K L, Thomas C A, Casey D T, et al. 2018 Phys. Rev. Lett. 121 135001
[14] Abu-Shawareb H, Acree R, Adams P, et al. 2022 Phys. Rev. Lett. 129 075001
[15] Abu-Shawareb H, Acree R, Adams P, et al. 2024 Phys. Rev. Lett. 132 065102
[16] Hurricane O A, Callahan D A, Casey D T, Christopherson A R, Kritcher A L, Landen O L, Maclaren S A, Nora R, Patel P K, Ralph J, Schlossberg D, Springer P T, Young C V and Zylstra A B 2024 Phys. Rev. Lett. 132 065103
[17] Rubery M S, Rosen M D, Aybar N, et al. 2024 Phys. Rev. Lett. 132 065104
[18] Tabak M, Hammer J, Glinsky M E, KruerWL,Wilks S C,Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626
[19] MurakamiMand Nagatomo H 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 544 67
[20] Murakami M, Nagatomo H, Azechi H, Ogando F, Perlado M and Eliezer S 2006 Nucl. Fusion 46 99
[21] Azechi H, Sakaiya T, Watari T, et al. 2009 Phys. Rev. Lett. 102 235002
[22] Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, and Solodov A A 2007 Phys. Rev. Lett. 98 155001
[23] Nora R, Theobald W, Betti R, et al. 2015 Phys. Rev. Lett. 114 045001
[24] Velarde P, Ogando F, Eliezer S, Eliezer S, Martinez-val J M, Perlado J M and Murakami M 2005 Laser Part. Beams 23 43
[25] Zhang J,WangWM, Yang X H,Wu D, Ma Y Y, Jiao J L, Zhang J,Wu F Y, Yuan X H, Li Y T and Zhu J Q 2020 Phil. Trans. R. Soc. A 378 20200015
[26] Wang W M, Gibbon P, Sheng Z M and Li Y T 2015 Phys. Rev. Lett. 114 015001
[27] Zhou G, Wang W M, Li Y T and Zhang J 2022 Phys. Plasmas 29 052704
[28] Zhang T H, Wang W M, Li Y T and Zhang J 2022 Phys. Rev. E 106 055211
[29] Liu Z D, Zhong J Y, Yuan X H, et al. 2023 Chin. Phys. B 32 110702
[30] Zhu Z Y, Liu Y X, Li Y J and Zhang J 2022 Chin. Phys. B 31 105202
[31] Zhang C L, Zhang Y H, Yuan X H, et al. 2024 Chin. Phys. B 33 025201
[32] Zhu Z Y, Zhang C L, Li Y J and Zhang J 2024 Chin. Phys. B 33 065203
[33] Xie Y K, Zhang C L, Cheng Y Z and Li Y J 2024 Chin. Phys. B 33 125203
[34] Chen Z Y, Zhao K G and Li Y J 2024 Chin. Phys. B 33 115202
[35] Kodama R, Norreys P, Mima K, et al. 2001 Nature 412 798
[36] Agostinelli S, Allison J, Amako KA, et al. 2003 Nucl. Instrum. Methods Phys. Res. A 506 250
[37] Deutsch C, Furukawa H, Mima K, Murakami M and Nishihara K 1996 Phys. Rev. Lett. 77 2483
[38] Li C K and Petrasso R D 2004 Phys. Rev. E 70 067401
[39] Li C K and Petrasso R D 2006 Phys. Rev. E 73 016402
[40] Li C K and Petrasso R D 2006 Phys. Plasmas 13 056314
[41] Solodov A A and Betti R 2008 Phys. Plasmas 15 042707
[42] Atzeni S, Schiavi A and Davies J R 2009 Plasma Phys. Control. Fusion 51 015016
[43] Lewis H W 1950 Phys. Rev. 78 526
[44] Seltzer S M and Berger M J 1985 Nucl. Instrum. Methods Phys. Res. B 12 95
[45] Seltzer S M and Berger M J 1986 At Data Nucl Data Tables 35 345
[46] Strozzi D J, Tabak M, Larson D J, Divol L, Kemp A J, Bellei C, Marinak M M and Key M H 2012 Phys. Plasmas 19 072711
[47] Stephens R B, Snavely R A, Aglitskiy Y, et al. 2004 Phys. Rev. E 69 066414
[48] Sheng Z M, Sentoku Y, Mima K, Zhang J, Yu W and Meyer-ter-Vehn J 2000 Phys. Rev. Lett. 85 5340
[1] Effect of tearing modes on the confinement of runaway electrons in Experimental Advanced Superconducting Tokamak
Rui-Jie Zhou(周瑞杰). Chin. Phys. B, 2023, 32(7): 075204.
[2] Electron emission induced by keV protons from tungsten surface at different temperatures
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋). Chin. Phys. B, 2022, 31(7): 073202.
[3] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[4] Neutron-induced single event upset simulation in Geant4 for three-dimensional die-stacked SRAM
Li-Hua Mo(莫莉华), Bing Ye(叶兵), Jie Liu(刘杰), Jie Luo(罗捷), You-Mei Sun(孙友梅), Chang Cai(蔡畅), Dong-Qing Li(李东青), Pei-Xiong Zhao(赵培雄), and Ze He(贺泽). Chin. Phys. B, 2021, 30(3): 036103.
[5] Geant4 simulation of proton-induced single event upset in three-dimensional die-stacked SRAM device
Bing Ye(叶兵), Li-Hua Mo(莫莉华), Tao Liu(刘涛), Jie Luo(罗捷), Dong-Qing Li(李东青), Pei-Xiong Zhao(赵培雄), Chang Cai(蔡畅), Ze He(贺泽), You-Mei Sun(孙友梅), Ming-Dong Hou(侯明东), Jie Liu(刘杰). Chin. Phys. B, 2020, 29(2): 026101.
[6] The inverse Bremsstrahlung absorption in the presence of Maxwellian and non-Maxwellian electrons
Mehdi Sharifian, Fatemeh Ghoveisi, Leila Gholamzadeh, Narges Firouzi Farrashbandi. Chin. Phys. B, 2019, 28(10): 105202.
[7] Investigation of flux dependent sensitivity on single event effect in memory devices
Jie Luo(罗捷), Tie-shan Wang(王铁山), Dong-qing Li(李东青), Tian-qi Liu(刘天奇), Ming-dong Hou(侯明东), You-mei Sun(孙友梅), Jing-lai Duan(段敬来), Hui-jun Yao(姚会军), Kai Xi(习凯), Bing Ye(叶兵), Jie Liu(刘杰). Chin. Phys. B, 2018, 27(7): 076101.
[8] Simulation of positron backscattering and implantation profiles using Geant4 code
Huang Shi-Juan (黄世娟), Pan Zi-Wen (潘子文), Liu Jian-Dang (刘建党), Han Rong-Dian (韩荣典), Ye Bang-Jiao (叶邦角). Chin. Phys. B, 2015, 24(10): 107803.
[9] Reconstruction of a 6-MeV bremsstrahlung spectrum by multi-layer absorption based on LiF:Mg, Cu, P
Huang Jian-Wei (黄建微), Wang Nai-Yan (王乃彦). Chin. Phys. B, 2014, 23(10): 108702.
[10] Monte Carlo evaluation of spatial multiple-bit upset sensitivity to oblique incidence
Geng Chao (耿超), Liu Jie (刘杰), Xi Kai (习凯), Zhang Zhan-Gang (张战刚), Gu Song (古松), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Duan Jing-Lai (段敬来), Yao Hui-Jun (姚会军), Mo Dan (莫丹). Chin. Phys. B, 2013, 22(5): 059501.
[11] A unique circular path of moving single bubble sonoluminescence in water
Rasoul Sadighi-Bonabi, Mona Mirheydari, Homa Ebrahimi, Nastaran Rezaee, and Lida Nikzad. Chin. Phys. B, 2011, 20(7): 074302.
[12] Monte Carlo simulation for bremsstrahlung and photoneutron yields in high-energy x-ray radiography
Xu Hai-Bo(许海波), Peng Xian-Ke(彭现科), and Chen Chao-Bin(陈朝斌). Chin. Phys. B, 2010, 19(6): 062901.
[13] Monte Carlo simulation of electron beam air plasma characteristics
Deng Yong-Feng(邓永锋), Han Xian-Wei(韩先伟), and Tan Chang(谭畅). Chin. Phys. B, 2009, 18(9): 3870-3876.
[14] Monte Carlo simulation of exposure factor
Zhang Tao(张涛), Liu Yi-Bao(刘义保), Yang Bo(杨波), Wu He-Xi(吴和喜), and Gu Jin-Hu(顾金虎). Chin. Phys. B, 2009, 18(6): 2217-2222.
[15] Effect of sheath potential on electromagnetic radiation emitted from the rear surface of a metallic foil target
Zheng Jian(郑坚), Li Zhi-Chao(李志超), Zhang Hui(张辉), Yu Chang-Xuan(俞昌旋), Yabuuchi Toshinori(薮内俊毅), and Tanaka Kazuo(田中和夫). Chin. Phys. B, 2007, 16(10): 3009-3015.
No Suggested Reading articles found!