|
Special Issue:
SPECIAL TOPIC — Quantum communication and quantum network
|
| SPECIAL TOPIC — Quantum communication and quantum network |
Prev
Next
|
|
|
Mode-pairing quantum key distribution with multi-step advantage distillation |
| Shizhuo Li(李世卓)1, Xin Liu(刘馨)1, Zhenrong Zhang(张振荣)2, and Kejin Wei(韦克金)1,† |
1 Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; 2 Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer Electronics and Information, Guangxi University, Nanning 530004, China |
|
|
|
|
Abstract The advantage distillation (AD) technology has been proven to effectively improve the secret key rate and the communication distance of quantum key distribution (QKD). The mode-pairing quantum key distribution (MP-QKD) protocol can overcome a fundamental physical limit, known as the Pirandola-Laurenza-Ottaviani-Banchi bound, without requiring global phase-locking. In this work, we propose a method based on multi-step AD to further enhance the performance of MP-QKD. The simulation results show that, compared to one-step AD, multi-step AD achieves better performance in long-distance scenarios and can tolerate a higher quantum bit error rate. Specifically, when the difference between the communication distances from Alice and Bob to Charlie is 25 km, 50 km and 75 km, and the corresponding transmission distance exceeds 523 km, 512 km and 496 km, respectively, the secret key rate achieved by multi-step AD surpasses that of one-step AD. Our findings indicate that the proposed method can effectively promote the application of MP-QKD in scenarios with high loss and high error rate.
|
Received: 09 June 2025
Revised: 17 July 2025
Accepted manuscript online: 28 July 2025
|
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
| |
03.67.Hk
|
(Quantum communication)
|
| |
03.67.-a
|
(Quantum information)
|
|
| Fund: This study was supported by the National Natural Science Foundation of China (Grant Nos. 62171144 and 62031024), Guangxi Science Foundation (Grant Nos. 2025GXNSFAA069137 and GXR-1BGQ2424005), and Innovation Project of Guangxi Graduate Education (Grant No. YCBZ2025064). |
Corresponding Authors:
Kejin Wei
E-mail: kjwei@gxu.edu.cn
|
Cite this article:
Shizhuo Li(李世卓), Xin Liu(刘馨), Zhenrong Zhang(张振荣), and Kejin Wei(韦克金) Mode-pairing quantum key distribution with multi-step advantage distillation 2025 Chin. Phys. B 34 090307
|
[1] Shor P W 1994 Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science (IEEE, New York) pp. 124-134 [2] Zhang C X, Wu D, Cui P W, Ma J C, Wang Y and An J M 2023 Chin. Phys. B 32 124207 [3] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York) pp. 175-179 [4] Wei K, Li W, Tan H, Li Y, Min H, Zhang W J, Li H, You L, Wang Z, Jiang X, Chen T Y, Liao S K, Peng C Z, Xu F and Pan J W 2020 Phys. Rev. X 10 031030 [5] Grünenfelder F, Boaron A, Resta G V, Perrenoud M, Rusca D, Barreiro C, Houlmann R, Sax R, Stasi L, El-Khoury S, Hänggi E, Bosshard N, Bussières F and Zbinden H 2023 Nat. Photon. 17 422 [6] Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, et al. 2023 Nat. Photon. 17 416 [7] Zhang L, Li W, Pan J, Lu Y, Li W, Li Z P, Huang Y, Ma X, Xu F and Pan J W 2025 Phys. Rev. X 15 021037 [8] Shao S F, Zhou L, Lin J, Minder M, Ge C, Xie Y M, Shen A, Yan Z, Yin H L and Yuan Z 2025 Phys. Rev. X 15 021066 [9] Wang S, Yin Z Q, He D Y, ChenW,Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, et al. 2022 Nat. Photon. 16 154 [10] Zhou L, Lin J, Xie Y M, Lu Y S, Jing Y, Yin H L and Yuan Z 2023 Phys. Rev. Lett. 130 250801 [11] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q and Pan J W 2023 Phys. Rev. Lett. 130 210801 [12] Li Y, CaiWQ, Ren J G,Wang C Z, Yang M, Zhang L,Wu H Y, Chang L, Wu J C, Jin B, et al. 2025 Nature 640 47 [13] Beutel F, Brückerhoff-Plückelmann F, Gehring H, Kovalyuk V, Zolotov P, Goltsman G and Pernice W H P 2022 Optica 9 1121 [14] Wei K, Hu X, Du Y, Hua X, Zhao Z, Chen Y, Huang C and Xiao X 2023 Photon. Res. 11 1364 [15] Du Y, Li B H, Hua X, Cao X Y, Zhao Z, Xie F, Zhang Z, Yin H L, Xiao X and Wei K 2025 Light Sci. Appl. 14 108 [16] Liao S K, Cai W Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J G, Liu W Y, Li Y, Shen Q, Cao Y, Li F Z, Wang J F, Huang Y M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N L, Koidl F, Wang P, Chen Y A, Wang X B, Steindorfer M, Kirchner G, Lu C Y, Shu R, Ursin R, Scheidl T, Peng C Z,Wang J Y, Zeilinger A and Pan J W 2018 Phys. Rev. Lett. 120 030501 [17] Avesani M, Foletto G, Padovan M, Calderaro L, Agnesi C, Bazzani E, Berra F, Bertapelle T, Picciariello F, Santagiustina F B L, Scalcon D, Scriminich A, Stanco A, Vedovato F, Vallone G and Villoresi P 2022 J. Lightwave Technol. 40 1658 [18] Fitzke E, Bialowons L, Dolejsky T, Tippmann M, Nikiforov O,Walther T, Wissel F and Gunkel M 2022 PRX Quantum 3 020341 [19] Huang C, Chen Y, Luo T, He W, Liu X, Zhang Z and Wei K 2024 Sci. China-Phys. Mech. Astron. 67 240312 [20] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 [21] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 1 [22] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400 [23] Ma X, Zeng P and Zhou H 2018 Phys. Rev. X 8 031043 [24] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323 [25] Chistiakov V, Kozubov A, Gaidash A, Gleim A and Miroshnichenko G 2019 Opt. Express 27 36551 [26] Cui C, Yin Z Q,Wang R, ChenW,Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053 [27] Zhang C M, Xu Y W, Wang R and Wang Q 2020 Phys. Rev. Appl. 14 064070 [28] Zhou L, Lin J, Jing Y and Yuan Z 2023 Nat. Commun. 14 928 [29] Ma H, Han Y, Dou T and Li P 2023 Chin. Phys. B 32 020304 [30] Zhong X, Hu J, Curty M, Qian L and Lo H K 2019 Phys. Rev. Lett. 123 100506 [31] Pittaluga M, Minder M, Lucamarini M, Sanzaro M, Woodward R I, Li M J, Yuan Z and Shields A J 2021 Nat. Photon. 15 530 [32] Clivati C, Meda A, Donadello S, Virzì S, Genovese M, Levi F, Mura A, Pittaluga M, Yuan Z, Shields A J, et al. 2022 Nat. Commun. 13 157 [33] Li W, Zhang L, Lu Y, Li Z P, Jiang C, Liu Y, Huang J, Li H, Wang Z, Wang X B, Zhang Q, You L, Xu F and Pan J W 2023 Phys. Rev. Lett. 130 250802 [34] Chen J P, Zhou F, Zhang C, Jiang C, Chen F X, Huang J, Li H, You L X, Wang X B, Liu Y, Zhang Q and Pan J W 2024 Phys. Rev. Lett. 132 260802 [35] Fang X T, Zeng P, Liu H, Zou M, Wu W, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, et al. 2020 Nat. Photon. 14 422 [36] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, et al. 2021 Nat. Photon. 15 570 [37] Du H, Paraiso T K, Pittaluga M, Lo Y S, Dolphin J A and Shields A J 2024 Optica 11 1385 [38] Zeng P, Zhou H, Wu W and Ma X 2022 Nat. Commun. 13 1 [39] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L and Chen Z B 2022 PRX Quantum 3 020315 [40] Zhu H T, Huang Y, Liu H, Zeng P, Zou M, Dai Y, Tang S, Li H, You L, Wang Z, Chen Y A, Ma X, Chen T Y and Pan J W 2023 Phys. Rev. Lett. 130 030801 [41] Zhu H T, Huang Y, Pan W X, Zhou C W, Tang J, He H, Cheng M, Jin X, Zou M, Tang S, Ma X, Chen T Y and Pan J W 2024 Optica 11 883 [42] Li Z, Dou T, Cheng M, Liu Y and Tang J 2024 Opt. Lett. 49 6609 [43] Wang Z H, Wang R, Yin Z Q, Wang S, Lu F Y, Chen W, He D Y, Guo G C and Han Z F 2023 Commun. Phys. 6 265 [44] Liu X, Luo D, Zhang Z and Wei K 2023 Phys. Rev. A 107 062613 [45] Lu Z, Wang G, Li C and Cao Z 2024 Phys. Rev. A 109 012401 [46] Cui W, Yang C, Huang G and Jiao R 2024 Phys. Scr. 99 085112 [47] Luo D, Liu X, Qin K, Zhang Z and Wei K 2024 Phys. Rev. A 110 022605 [48] Zhou X Y, Hu J R, Zhang C H and Wang Q 2025 Opt. Lett. 50 249 [49] Lu Y F, Wang Y, Li H W, Jiang M S, Zhang X X, Zhang Y Y, Zhou Y, Jiang X L, Wang H T, Zhao Y M, Zhou C and Bao W S 2025 Phys. Rev. Res. 7 023102 [50] Li C L, Yin H L and Chen Z B 2024 Rep. Prog. Phys. 87 127901 [51] Lu Y S, Yin H L, Xie Y M, Fu Y and Chen Z B 2025 Rep. Prog. Phys. 88 067901 [52] Wang W, Xu F and Lo H K 2019 Phys. Rev. X 9 041012 [53] Jiang C, Hu X L, Yu Z W and Wang X B 2022 Photon. Res. 10 1703 [54] Liu X, Luo D, Luo Z, Li S, Zhang Z and Wei K 2024 Phys. Rev. Appl. 22 064018 [55] Maurer U 1993 IEEE Trans. Inf. Theory 39 733 [56] Gottesman D and Lo H K 2003 IEEE Trans. Inf. Theory 49 457 [57] Ma X, Fung C H F, Dupuis F, Chen K, Tamaki K and Lo H K 2006 Phys. Rev. A 74 032330 [58] Khatri S and Lütkenhaus N 2017 Phys. Rev. A 95 042320 [59] Tan E Y Z, Lim C CWand Renner R 2020 Phys. Rev. Lett. 124 020502 [60] Li H W, Zhang C M, Jiang M S and Cai Q Y 2022 Commun. Phys. 5 53 [61] Wang R Q, Zhang C M, Yin Z Q, Li H W, Wang S, Chen W, Guo G C and Han Z F 2022 New J. Phys. 24 073049 [62] Hu L W, Zhang C M and Li H W 2023 Quantum Inf. Process. 22 77 [63] Zhou Y, Wang R Q, Zhang C M, Yin Z Q, Wang Z H, Wang S, Chen W, Guo G C and Han Z F 2024 Phys. Rev. Appl. 21 014036 [64] Zhang C M, Wang Z, Wu Y D, Zhu J R, Wang R and Li H W 2024 Phys. Rev. A 109 052432 [65] Wang H T, Zhou C, Lu Y F, Hao C P, Zhao Y M, Zhou Y Y, Li H W and Bao W S 2025 Chin. Phys. B 34 040305 [66] Hao C P, Liu Y, Wang Y, Zhou C, Zhou Y Y, Bao W S and Li H W 2024 Quantum Inf. Process. 23 148 [67] Li Y H, Li S L, Hu X L, Jiang C, Yu Z W, Li W, Liu W Y, Liao S K, Ren J G, Li H, You L, Wang Z, Yin J, Xu F, Zhang Q, Wang X B, Cao Y, Peng C Z and Pan J W 2023 Phys. Rev. Lett. 131 100802 [68] Du Z, Liu G, Zhang X and Ma X 2024 Quantum Sci. Technol. 10 015050 [69] Ma X and Razavi M 2012 Phys. Rev. A 86 062319 [70] Renner R 2008 Int. J. Quantum Inf. 6 1 [71] Li H W, Chen W, Huang J Z, Yao Y, Liu D, Li F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Li Y H, Yu N H and Han Z F 2012 Sci. Sin.: Phys. Mech. Astron. 42 1237 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|