Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 088902    DOI: 10.1088/1674-1056/adec62
Special Issue: SPECIAL TOPIC — Computational programs in complex systems
SPECIAL TOPIC — Computational programs in complex systems Prev  

Six-degree gravity centrality for detecting influential nodes in networks

Jianbo Wang(王建波)1,2,3,†, Bohang Lin(林渤杭)1, Zhanwei Du(杜占玮)2, Ping Li(李平)1, and Xiao-Ke Xu(许小可)4,‡
1 The School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, China;
2 The School of Public Health, The University of Hong Kong, Hong Kong 999077, China;
3 The Intelligent Policing and National Security Risk Management Laboratory, Sichuan Police College, Luzhou 646000, China;
4 The Computational Communication Research Center and The School of Journalism and Communication, Beijing Normal University, Beijing 100875, China
Abstract  Identifying critical nodes is a pivotal research topic in network science, yet the efficient and accurate detection of highly influential nodes remains a challenge. Existing centrality measures predominantly rely on local or global topological structures, often overlooking indirect connections and their interaction strengths. This leads to imprecise assessments of node importance, limiting practical applications. To address this, we propose a novel node centrality measure, termed six-degree gravity centrality (SDGC), grounded in the six degrees of separation theory, for the precise identification of influential nodes in networks. Specifically, we introduce a set of node influence parameters—node mass, dynamic interaction distance, and attraction coefficient—to enhance the gravity model. Node mass is calculated by integrating K-shell and closeness centrality measures. The dynamic interaction distance, informed by the six-degrees of separation theory, is determined through path searches within six hops between node pairs. The attraction coefficient is derived from the difference in K-shell values between nodes. By integrating these parameters, we develop an improved gravity model to quantify node influence. Experiments conducted on nine real-world networks demonstrate that SDGC significantly outperforms nine existing classical and state-of-the-art methods in identifying the influential nodes.
Keywords:  gravity model      influential nodes      six degrees of separation      semi-local information  
Received:  01 June 2025      Revised:  04 July 2025      Accepted manuscript online:  07 July 2025
PACS:  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62173065), the Natural Science Foundation of Beijing (Grant No. 4242040), the Intelligent Policing and National Security Risk Management Laboratory Open Topics for the year 2025 (Grant No. ZHKFYB2503), and the Intelligent Policing and National Security Risk Management Laboratory Open Topics for the year 2024 (Grant No. ZHKFZD2401).
Corresponding Authors:  Jianbo Wang, Xiao-Ke Xu     E-mail:  jianbow2021@gmail.com;xuxiaoke@foxmail.com

Cite this article: 

Jianbo Wang(王建波), Bohang Lin(林渤杭), Zhanwei Du(杜占玮), Ping Li(李平), and Xiao-Ke Xu(许小可) Six-degree gravity centrality for detecting influential nodes in networks 2025 Chin. Phys. B 34 088902

[1] De Souza R C, Figueiredo D R, Rocha A A de A and Ziviani A 2020 Inf. Sci. 514 369
[2] Vermeulen R, Schymanski E L, Barabási A L and Miller G W 2020 Science 367 392
[3] Pelusi D 2019 IEEE Access 7 112171
[4] Havlin S, Kenett D Y, Ben-Jacob E, Bunde A, Cohen R, Hermann H, Kantelhardt J W, Kertész J, Kirkpatrick S, Kurths J, et al. 2012 Eur. Phys. J. Spec. Top. 214 273
[5] Yang H H and An S 2020 Symmetry 12 123
[6] Zhang Y, Wang Z Q and Xia C L 2010 Proc. IEEE Int. Conf. Adv. Inf. Netw. Appl. Workshops 644
[7] De Arruda G F, Barbieri A L, Rodriguez P M, Rodrigues F A, Moreno Y and Costa L F 2014 Phys. Rev. E 90 032812
[8] Kumar S, Jha S and Rai S K 2020 Indian J. Public Health 64 139
[9] Subbian K, Aggarwal C and Srivastava J 2016 ACM Trans. Knowl. Discov. Data 10 1
[10] Rashid Y and Bhat J I 2024 Multimed. Syst. 30 57
[11] Rezaei A A, Munoz J, JaliliMand Khayyam H 2023 Expert Syst. Appl. 214 119086
[12] Kilkenny M and Nalbarte L 2020 Reg. Res. Inst., West Virginia Univ.
[13] Yuan B, Song T and Yao J 2024 Proc. Int. Conf. Consum. Electron. Comput. Eng. (ICCECE) 11
[14] Aggarwal K and Arora A 2023 Soc. Netw. Anal. Min. 13 146
[15] Liu P, Li L, Fang S and Yao Y 2021 Chaos Solitons Fractals 152 111309
[16] Casero-Ripollès A 2021 Sustainability 13 2851
[17] Bonacich P 1972 J. Math. Sociol. 2 113
[18] Freeman L C 1977 Sociometry 35–41
[19] Freeman L C 2002 Soc. Netw.: Crit. Concepts Sociol. 1 238
[20] Bonacich P and Lloyd P 2001 Soc. Netw. 23 191
[21] Brin S and Page L 1998 Comput. Netw. ISDN Syst. 30 107
[22] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[23] Fatima U, Hina S and Wasif M 2023 J. Comput. Sci. 70 102008
[24] Ullah A, Wang B, Sheng J, Long J, Khan N and Sun Z 2021 Sci. Rep. 11 6173
[25] Yang Y, Wang X, Chen Y and Hu M 2020 IEEE Access 8 32904
[26] Zhao J,Wang Y and Deng Y 2020 Chaos Solitons Fractals 133 109637
[27] Zhong S, Zhang H and Deng Y 2022 Inf. Sci. 610 994
[28] Xu G and Meng L 2023 Chaos Solitons Fractals 168 113155
[29] Wen T and Deng Y 2020 Inf. Sci. 512 549
[30] Zhang J, Zhang Q, Wu L and Zhang J 2022 Entropy 24 293
[31] Yang P, Zhao L, Dong C, Xu G and Zhou L 2023 Chin. Phys. B 32 058901
[32] Ai D, Liu X, Kang W, Li L, Lü S and Liu Y 2023 Chin. Phys. B 32 118902
[33] Sheng J, Dai J,Wang B, Duan G, Long J, Zhang J, Guan K, Hu S, Chen L and Guan W 2020 Phys. A 541 123262
[34] Qiu L, Zhang J and Tian X 2021 Appl. Intell. 51 4394
[35] Hu H, Sun Z, Wang F, Zhang L and Wang G 2022 Sci. Rep. 12 22506
[36] Mijia L, Hongquan W, Yingle L and Shuxin L 2021 J. Phys. Conf. Ser. 1738 012026
[37] Su Z, Chen L, Ai J, Zheng Y and Bie N 2024 Chin. Phys. B 33 058901
[38] Wang Y, Li H, Zhang L, Zhao L and Li W 2022 Chaos Solitons Fractals 162 112513
[39] Yang P, Meng F, Zhao L and Zhou L 2023 Chaos Solitons Fractals 166 112974
[40] Guo H,Wang S, Yan X and Zhang K 2024 Chaos Solitons Fractals 183 114924
[41] Zhang Q, Shuai B and Lü M 2022 Inf. Sci. 618 98
[42] Liu W, Lu P and Zhang T 2023 IEEE Trans. Comput. Soc. Syst. 11 2105
[43] Zhang K, Zhou Y, Long H, Wang C, Hong H and Armaghan SM 2023 J. King Saud Univ. - Comput. Inf. Sci. 35 101798
[44] Wang X, Slamu W, Guo W, Wang S and Ren Y 2022 Chaos Solitons Fractals 158 112037
[45] Farahi Z, Kamandi A, Abedian R and Rocha L E C 2024 arXiv:2409.15142
[46] Milgram S and others 1967 Psychol. Today 2 60
[47] Zhang J and Luo Y 2017 Proc. 2nd Int. Conf. Model. Simul. Appl. Math. (MSAM2017) 300
[48] Liu P, Xu Y and Deng C 2024 J. Netw. Intell. 9 February
[49] Newman M E J 2006 Phys. Rev. E 74 036104
[50] Su J, Scott J, Hui P, Crowcroft J, De Lara E, Diot C, Goel A, Lim M H and Upton E 2007 Proc. Int. Conf. Ubiquitous Comput. 391
[51] Colizza V, Pastor-Satorras R and Vespignani A 2007 Nat. Phys. 3 276
[52] Isella L, Stehlé J, Barrat A, Cattuto C, Pinton J F and Van den Broeck W 2011 J. Theor. Biol. 271 166
[53] Guimera R, Danon L, Diaz-Guilera A, Giralt F and Arenas A 2003 Phys. Rev. E 68 065103
[54] Adamic L A and Glance N 2005 Proc. 3rd Int. Workshop Link Discov. 36
[55] Kunegis J 2013 Proc. 22nd Int. Conf. World Wide Web 1343
[56] Mcauley J and Leskovec J 2014 ACM Trans. Knowl. Discov. Data 8 1
[57] Leskovec J, Kleinberg J and Faloutsos C 2007 ACM Trans. Knowl. Discov. Data 1 2
[58] Li Z, Ren T, Ma X, Liu S, Zhang Y and Zhou T 2019 Sci. Rep. 9 8387
[59] Li S and Xiao F 2021 Inf. Sci. 578 725
[60] Yang M, Chen G and Fu X 2011 Phys. A Stat. Mech. Appl. 390 2408
[61] VragoviI, Louis E and Díaz-Guilera A 2005 Phys. Rev. E 71 036122
[62] Lü L, Chen D, Ren X L, Zhang Q M, Zhang Y C and Zhou T 2016 Phys. Rep. 650 1
[1] AIGCrank: A new adaptive algorithm for identifying a set of influential spreaders in complex networks based on gravity centrality
Ping-Le Yang(杨平乐), Lai-Jun Zhao(赵来军), Chen Dong(董晨),Gui-Qiong Xu(徐桂琼), and Li-Xin Zhou(周立欣). Chin. Phys. B, 2023, 32(5): 058901.
[2] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜), Shao-Qing Lü(吕少卿), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(11): 118902.
[3] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[4] A novel method for identifying influential nodes in complex networks based on gravity model
Yuan Jiang(蒋沅), Song-Qing Yang(杨松青), Yu-Wei Yan(严玉为),Tian-Chi Tong(童天驰), and Ji-Yang Dai(代冀阳). Chin. Phys. B, 2022, 31(5): 058903.
[5] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[6] Detection of influential nodes with multi-scale information
Jing-En Wang(王静恩), San-Yang Liu(刘三阳), Ahmed Aljmiai, and Yi-Guang Bai(白艺光). Chin. Phys. B, 2021, 30(8): 088902.
[7] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[8] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
No Suggested Reading articles found!