|
Special Issue:
SPECIAL TOPIC — Computational programs in complex systems
|
| SPECIAL TOPIC — Computational programs in complex systems |
Prev
|
|
|
Six-degree gravity centrality for detecting influential nodes in networks |
| Jianbo Wang(王建波)1,2,3,†, Bohang Lin(林渤杭)1, Zhanwei Du(杜占玮)2, Ping Li(李平)1, and Xiao-Ke Xu(许小可)4,‡ |
1 The School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, China; 2 The School of Public Health, The University of Hong Kong, Hong Kong 999077, China; 3 The Intelligent Policing and National Security Risk Management Laboratory, Sichuan Police College, Luzhou 646000, China; 4 The Computational Communication Research Center and The School of Journalism and Communication, Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract Identifying critical nodes is a pivotal research topic in network science, yet the efficient and accurate detection of highly influential nodes remains a challenge. Existing centrality measures predominantly rely on local or global topological structures, often overlooking indirect connections and their interaction strengths. This leads to imprecise assessments of node importance, limiting practical applications. To address this, we propose a novel node centrality measure, termed six-degree gravity centrality (SDGC), grounded in the six degrees of separation theory, for the precise identification of influential nodes in networks. Specifically, we introduce a set of node influence parameters—node mass, dynamic interaction distance, and attraction coefficient—to enhance the gravity model. Node mass is calculated by integrating K-shell and closeness centrality measures. The dynamic interaction distance, informed by the six-degrees of separation theory, is determined through path searches within six hops between node pairs. The attraction coefficient is derived from the difference in K-shell values between nodes. By integrating these parameters, we develop an improved gravity model to quantify node influence. Experiments conducted on nine real-world networks demonstrate that SDGC significantly outperforms nine existing classical and state-of-the-art methods in identifying the influential nodes.
|
Received: 01 June 2025
Revised: 04 July 2025
Accepted manuscript online: 07 July 2025
|
|
PACS:
|
89.75.Hc
|
(Networks and genealogical trees)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62173065), the Natural Science Foundation of Beijing (Grant No. 4242040), the Intelligent Policing and National Security Risk Management Laboratory Open Topics for the year 2025 (Grant No. ZHKFYB2503), and the Intelligent Policing and National Security Risk Management Laboratory Open Topics for the year 2024 (Grant No. ZHKFZD2401). |
Corresponding Authors:
Jianbo Wang, Xiao-Ke Xu
E-mail: jianbow2021@gmail.com;xuxiaoke@foxmail.com
|
Cite this article:
Jianbo Wang(王建波), Bohang Lin(林渤杭), Zhanwei Du(杜占玮), Ping Li(李平), and Xiao-Ke Xu(许小可) Six-degree gravity centrality for detecting influential nodes in networks 2025 Chin. Phys. B 34 088902
|
[1] De Souza R C, Figueiredo D R, Rocha A A de A and Ziviani A 2020 Inf. Sci. 514 369 [2] Vermeulen R, Schymanski E L, Barabási A L and Miller G W 2020 Science 367 392 [3] Pelusi D 2019 IEEE Access 7 112171 [4] Havlin S, Kenett D Y, Ben-Jacob E, Bunde A, Cohen R, Hermann H, Kantelhardt J W, Kertész J, Kirkpatrick S, Kurths J, et al. 2012 Eur. Phys. J. Spec. Top. 214 273 [5] Yang H H and An S 2020 Symmetry 12 123 [6] Zhang Y, Wang Z Q and Xia C L 2010 Proc. IEEE Int. Conf. Adv. Inf. Netw. Appl. Workshops 644 [7] De Arruda G F, Barbieri A L, Rodriguez P M, Rodrigues F A, Moreno Y and Costa L F 2014 Phys. Rev. E 90 032812 [8] Kumar S, Jha S and Rai S K 2020 Indian J. Public Health 64 139 [9] Subbian K, Aggarwal C and Srivastava J 2016 ACM Trans. Knowl. Discov. Data 10 1 [10] Rashid Y and Bhat J I 2024 Multimed. Syst. 30 57 [11] Rezaei A A, Munoz J, JaliliMand Khayyam H 2023 Expert Syst. Appl. 214 119086 [12] Kilkenny M and Nalbarte L 2020 Reg. Res. Inst., West Virginia Univ. [13] Yuan B, Song T and Yao J 2024 Proc. Int. Conf. Consum. Electron. Comput. Eng. (ICCECE) 11 [14] Aggarwal K and Arora A 2023 Soc. Netw. Anal. Min. 13 146 [15] Liu P, Li L, Fang S and Yao Y 2021 Chaos Solitons Fractals 152 111309 [16] Casero-Ripollès A 2021 Sustainability 13 2851 [17] Bonacich P 1972 J. Math. Sociol. 2 113 [18] Freeman L C 1977 Sociometry 35–41 [19] Freeman L C 2002 Soc. Netw.: Crit. Concepts Sociol. 1 238 [20] Bonacich P and Lloyd P 2001 Soc. Netw. 23 191 [21] Brin S and Page L 1998 Comput. Netw. ISDN Syst. 30 107 [22] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888 [23] Fatima U, Hina S and Wasif M 2023 J. Comput. Sci. 70 102008 [24] Ullah A, Wang B, Sheng J, Long J, Khan N and Sun Z 2021 Sci. Rep. 11 6173 [25] Yang Y, Wang X, Chen Y and Hu M 2020 IEEE Access 8 32904 [26] Zhao J,Wang Y and Deng Y 2020 Chaos Solitons Fractals 133 109637 [27] Zhong S, Zhang H and Deng Y 2022 Inf. Sci. 610 994 [28] Xu G and Meng L 2023 Chaos Solitons Fractals 168 113155 [29] Wen T and Deng Y 2020 Inf. Sci. 512 549 [30] Zhang J, Zhang Q, Wu L and Zhang J 2022 Entropy 24 293 [31] Yang P, Zhao L, Dong C, Xu G and Zhou L 2023 Chin. Phys. B 32 058901 [32] Ai D, Liu X, Kang W, Li L, Lü S and Liu Y 2023 Chin. Phys. B 32 118902 [33] Sheng J, Dai J,Wang B, Duan G, Long J, Zhang J, Guan K, Hu S, Chen L and Guan W 2020 Phys. A 541 123262 [34] Qiu L, Zhang J and Tian X 2021 Appl. Intell. 51 4394 [35] Hu H, Sun Z, Wang F, Zhang L and Wang G 2022 Sci. Rep. 12 22506 [36] Mijia L, Hongquan W, Yingle L and Shuxin L 2021 J. Phys. Conf. Ser. 1738 012026 [37] Su Z, Chen L, Ai J, Zheng Y and Bie N 2024 Chin. Phys. B 33 058901 [38] Wang Y, Li H, Zhang L, Zhao L and Li W 2022 Chaos Solitons Fractals 162 112513 [39] Yang P, Meng F, Zhao L and Zhou L 2023 Chaos Solitons Fractals 166 112974 [40] Guo H,Wang S, Yan X and Zhang K 2024 Chaos Solitons Fractals 183 114924 [41] Zhang Q, Shuai B and Lü M 2022 Inf. Sci. 618 98 [42] Liu W, Lu P and Zhang T 2023 IEEE Trans. Comput. Soc. Syst. 11 2105 [43] Zhang K, Zhou Y, Long H, Wang C, Hong H and Armaghan SM 2023 J. King Saud Univ. - Comput. Inf. Sci. 35 101798 [44] Wang X, Slamu W, Guo W, Wang S and Ren Y 2022 Chaos Solitons Fractals 158 112037 [45] Farahi Z, Kamandi A, Abedian R and Rocha L E C 2024 arXiv:2409.15142 [46] Milgram S and others 1967 Psychol. Today 2 60 [47] Zhang J and Luo Y 2017 Proc. 2nd Int. Conf. Model. Simul. Appl. Math. (MSAM2017) 300 [48] Liu P, Xu Y and Deng C 2024 J. Netw. Intell. 9 February [49] Newman M E J 2006 Phys. Rev. E 74 036104 [50] Su J, Scott J, Hui P, Crowcroft J, De Lara E, Diot C, Goel A, Lim M H and Upton E 2007 Proc. Int. Conf. Ubiquitous Comput. 391 [51] Colizza V, Pastor-Satorras R and Vespignani A 2007 Nat. Phys. 3 276 [52] Isella L, Stehlé J, Barrat A, Cattuto C, Pinton J F and Van den Broeck W 2011 J. Theor. Biol. 271 166 [53] Guimera R, Danon L, Diaz-Guilera A, Giralt F and Arenas A 2003 Phys. Rev. E 68 065103 [54] Adamic L A and Glance N 2005 Proc. 3rd Int. Workshop Link Discov. 36 [55] Kunegis J 2013 Proc. 22nd Int. Conf. World Wide Web 1343 [56] Mcauley J and Leskovec J 2014 ACM Trans. Knowl. Discov. Data 8 1 [57] Leskovec J, Kleinberg J and Faloutsos C 2007 ACM Trans. Knowl. Discov. Data 1 2 [58] Li Z, Ren T, Ma X, Liu S, Zhang Y and Zhou T 2019 Sci. Rep. 9 8387 [59] Li S and Xiao F 2021 Inf. Sci. 578 725 [60] Yang M, Chen G and Fu X 2011 Phys. A Stat. Mech. Appl. 390 2408 [61] VragoviI, Louis E and Díaz-Guilera A 2005 Phys. Rev. E 71 036122 [62] Lü L, Chen D, Ren X L, Zhang Q M, Zhang Y C and Zhou T 2016 Phys. Rep. 650 1 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|