Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040504    DOI: 10.1088/1674-1056/adacc7
GENERAL Prev   Next  

A novel approach to visual image encryption: 2D hyperchaos, variable Josephus, and 3D diffusion

Yan Hong(洪炎), Xinyan Duan(段心妍)†, Jingming Su(苏静明), Zhaopan Wang(王昭盼), and Shihui Fang(方士辉)‡
School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China
Abstract  With the development of the Internet, image encryption technology has become critical for network security. Traditional methods often suffer from issues such as insufficient chaos, low randomness in key generation, and poor encryption efficiency. To enhance performance, this paper proposes a new encryption algorithm designed to optimize parallel processing and adapt to images of varying sizes and colors. The method begins by using SHA-384 to extract the hash value of the plaintext image, which is then processed to determine the chaotic system's initial value and block size. The image is padded and divided into blocks for further processing. A novel two-dimensional infinite collapses hyperchaotic map (2D-ICHM) is employed to generate the intra-block scrambling sequence, while an improved variable Joseph traversal sequence is used for inter-block scrambling. After removing the padding, 3D forward and backward shift diffusions, controlled by the 2D-ICHM sequences, are applied to the scrambled image, producing the ciphertext. Simulation results demonstrate that the proposed algorithm outperforms others in terms of entropy, anti-noise resilience, correlation coefficient, robustness, and encryption efficiency.
Keywords:  SHA-384      two-dimensional infinite collapses hyperchaotic map (2D-ICHM)      variable Joseph traversal      3D forward shift diffusion  
Received:  27 November 2024      Revised:  08 January 2025      Accepted manuscript online:  22 January 2025
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  07.05.Pj (Image processing)  
  05.45.-a (Nonlinear dynamics and chaos)  
  42.68.Sq (Image transmission and formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62105004 and 52174141), the College Student Innovation and Entrepreneurship Fund Project (Grant No. 202210361053), Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center, Anhui University of Science & Technology (Grant No. KSJD202304), the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project (Grant No. AHSZNYGC-ZXKF021), the Talent Recruitment Special Fund of Anhui University of Science and Technology (Grant No. 2024yjrc175), the Graduate Innovation Fund Project of Anhui University of Science and Technology (Grant Nos. 2024cx2067, 2024cx2107, and 2024cx2064), and Seed Support Project for Postgraduate Innovation, Entrepreneurship and Practice at Anhui University of Science and Technology (Grant No. 2024cxcysj084).
Corresponding Authors:  Xinyan Duan, Shihui Fang     E-mail:  2024200889@aust.edu.cn;fsh@aust.edu.cn

Cite this article: 

Yan Hong(洪炎), Xinyan Duan(段心妍), Jingming Su(苏静明), Zhaopan Wang(王昭盼), and Shihui Fang(方士辉) A novel approach to visual image encryption: 2D hyperchaos, variable Josephus, and 3D diffusion 2025 Chin. Phys. B 34 040504

[1] Wang X and Zhao M 2021 Opt. Laser Technol. 143 107316
[2] Zhu S and Zhu C 2024 Sci. Rep. 14 15496
[3] Alexan W, El-Damak D and Gabr M 2024 IEEE Access 12 21092
[4] Gabr M, Elias R, Hosny K M, Papakostas G A and Alexan W 2023 IEEE Access 11 85002
[5] Lai Q, Hua H, Zhao X W, Erkan U and Toktas A 2023 Chaos Soliton. Fract. 175 114022
[6] Gabr M, Korayem Y, Chen Y L, Yee P L, Ku C S and Alexan W 2023 IEEE Access 11 119284
[7] AlexanW, Aly L, Korayem Y, Gabr M, El-Damak D and Fathy A 2024 IEEE Access 12 78589
[8] Alexan W, Gabr M, Mamdouh E, Elias R and Aboshousha 2023 IEEE Access 11 54928
[9] Lai Q and Chen Z 2023 Chaos Soliton. Fract. 176 114118
[10] Shakiba A 2021 Multimed Tools Appl. 80 17983
[11] Wu X, Wang D, Kurths J and Kan H 2016 Inf. Sci. 349 137
[12] Ding Y, Duan Z and Li S 2023 Vis. Comput. 39 1517
[13] Teng L, Wang X, Yang F and Xian Y 2021 Nonlinear Dyn. 105 1859
[14] Lai Q and Liu Y 2023 Expert Syst. Appl. 223 119923
[15] Zhou N R, Tong L J and ZoubWP 2023 Signal Processing 211 109107
[16] Gong L H and Luo H X 2023 Optics & Laser Technology 167 109665
[17] Guan Z, Li J, Huang L, Xiong X, Liu Y and Cai S 2022 Entropy 24 384
[18] Alkhayyat A, Ahmad M, Tsafack N, Tanveer M, Jiang D and Abd El-Latif A A 2022 J. Sign. Process. Syst. 94 315
[19] Le Z, Li Q, Chen H, et al. 2024 Phys. Scr. 99 055249
[20] Chen X, Mou J, Cao Y and Banerjee S 2023 Int. J. Bifurcation Chaos 33 2350190
[21] Hosny K M, Kamal S T and Darwish M M 2022 Multimed. Tools Appl. 81 505
[22] Wang X, Zhao M, Feng S and Chen X 2023 Soft Comput. 27 1223
[23] Kumar B S and Revathi R 2024 J. Eng. Appl. Sci. 71 41
[24] Guo Z, Chen S H, Zhou L and Gong L H 2024 Appl. Math. Mod. 131 49
[25] He D, He C, Jiang L G, Zhu H W and Hu G R 2001 IEEE Trans. Circuits Syst. 48 900
[26] Su J, Hong, Y, Fang S and Wen Y 2024 Chin. Phys. B 33 070502
[27] Lai Q and Yuan L 2023 Expert Systems with Applications. 223 119923
[28] Wen J, Xu X and Sun K 2023 Nonlinear Dyn. 111 6813
[29] Wang X, Xu X and Sun K 2023 Nonlinear Dyn. 111 14513
[30] Zhou N R, Hu L L, Huang Z W, Wang M M and Luo G S 2024 Expert Syst. Appl. 238 122052
[31] Nardo L G, Nepomuceno E G, Arias-Garcia J, et al. 2019 Chaos Soliton. Fract. 123 69
[32] Chen C, Sun K H and He S 2020 Signal Process. 168 107340
[33] Pak C, Sun K H and He S B 2020 Signal Process. 168 107340
[34] Li Z, Peng C, Tan W and Li L 2020 Symmetry 12 1497
[35] Zhang Y Q, He Y, Li P and Wang X Y 2020 Opt. Laser Technol. 128 106040
[36] Liu X, Tong X, Wang Z and Zhang M 2022 Multimed. Tools Appl. 81 21779
[37] Lai Q, Hu G, Erkan U and Toktas A 2023 Expert Syst. Appl. 213 118845
[38] Wen Y, Su J, Hong Y and Gong P 2022 IET Image Process 16 2467
[39] Lai Q and Hu G 2024 Transactions on Industrial Informatics 20 11262
[1] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[2] Associated network family of the unified piecewise linear chaotic family and their relevance
Haoying Niu(牛浩瀛) and Jie Liu(刘杰). Chin. Phys. B, 2025, 34(4): 040503.
[3] Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control
Cheng-Jun Xie(解成俊) and Xiang-Qing Lu(卢向清). Chin. Phys. B, 2025, 34(4): 040601.
[4] A fractional-order chaotic Lorenz-based chemical system: Dynamic investigation, complexity analysis, chaos synchronization, and its application to secure communication
Haneche Nabil and Hamaizia Tayeb. Chin. Phys. B, 2024, 33(12): 120503.
[5] Experimental test of an extension of the Rosenzweig-Porter model to mixed integrable-chaotic systems experiencing time-reversal invariance violation
Xiaodong Zhang(张晓东), Jiongning Che(车炯宁), and Barbara Dietz. Chin. Phys. B, 2024, 33(12): 120501.
[6] Memristors-coupled neuron models with multiple firing patterns and homogeneous and heterogeneous multistability
Xuan Wang(王暄), Santo Banerjee, Yinghong Cao(曹颖鸿), and Jun Mou(牟俊). Chin. Phys. B, 2024, 33(10): 100501.
[7] A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
Jingming Su(苏静明), Shihui Fang(方士辉), Yan Hong(洪炎), and Yan Wen(温言). Chin. Phys. B, 2024, 33(7): 070502.
[8] Novel self-embedding holographic watermarking image encryption protection scheme
Linian Wang(王励年), Nanrun Zhou(周楠润), Bo Sun(孙博), Yinghong Cao(曹颖鸿), and Jun Mou(牟俊). Chin. Phys. B, 2024, 33(5): 050501.
[9] Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem
Jing-Xi Tian(田婧希), Song-Chang Jin(金松昌), Xiao-Qiang Zhang(张晓强), Shao-Wu Yang(杨绍武), and Dian-Xi Shi(史殿习). Chin. Phys. B, 2024, 33(5): 050502.
[10] Dynamics and synchronization of neural models with memristive membranes under energy coupling
Jingyue Wan(万婧玥), Fuqiang Wu(吴富强), Jun Ma(马军), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2024, 33(5): 050504.
[11] A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
Zheyi Zhang(张哲祎), Jun Mou(牟俊), Santo Banerjee, and Yinghong Cao(曹颖鸿). Chin. Phys. B, 2024, 33(2): 020503.
[12] Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭). Chin. Phys. B, 2024, 33(1): 010502.
[13] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[14] Dynamical analysis, geometric control and digital hardware implementation of a complex-valued laser system with a locally active memristor
Yi-Qun Li(李逸群), Jian Liu(刘坚), Chun-Biao Li(李春彪), Zhi-Feng Hao(郝志峰), and Xiao-Tong Zhang(张晓彤). Chin. Phys. B, 2023, 32(8): 080503.
[15] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
No Suggested Reading articles found!