Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040203    DOI: 10.1088/1674-1056/adbee5
GENERAL Prev   Next  

Analysis and image encryption of memristive chaotic system with coexistence bubble

Da Qiu(邱达)1,2, Bo Zhang(张博)2, Tingting Zhang(张婷婷)2, Song Liu(刘嵩)2, and Peiyu He(何培宇)1,†
1 Sichuan University, College of Electronics and Information Engineering, Chengdu 610065, China;
2 Hubei Minzu University, School of Intelligent Systems Science and Engineering, Enshi 445000, China
Abstract  In recent years, the phenomenon of multistability has attracted wide attention. In this paper, a memristive chaotic system with extreme multistability is constructed by using a memristor. The dynamic behavior of the system is analyzed by Poincaré mapping, a time series diagram, and a bifurcation diagram. The results show that the new system has several significant characteristics. First, the new system has a constant Lyapunov exponent, transient chaos and one complete Feigenbaum tree. Second, the system has the phenomenon of bifurcation map shifts that depend on the initial conditions. In addition, we find periodic bursting oscillations, chaotic bursting oscillations, and the transition of chaotic bursting oscillations to periodic bursting oscillations. In particular, when the system parameters take different discrete values, the system generates a bubble phenomenon that varies with the initial conditions, and this bubble can be shifted with the initial values, which has rarely been seen in the previous literature. The implementation by field-programmable gate array (FPGA) and analog circuit simulation show close alignment with the MATLAB numerical simulation results, validating the system's realizability. Additionally, the image encryption algorithm integrating DNA-based encoding and chaotic systems further demonstrates its practical applicability.
Keywords:  coexistence bubble      extreme multistability      clustered oscillation      anti-monotonicity  
Received:  12 January 2025      Revised:  25 February 2025      Accepted manuscript online:  11 March 2025
PACS:  02.30.Oz (Bifurcation theory)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  07.50.Ek (Circuits and circuit components)  
Fund: Project supported by the Natural Science Foundation of Hubei Province (Grant No. 2024AFD068).
Corresponding Authors:  Peiyu He     E-mail:  hpysbsy@163.com

Cite this article: 

Da Qiu(邱达), Bo Zhang(张博), Tingting Zhang(张婷婷), Song Liu(刘嵩), and Peiyu He(何培宇) Analysis and image encryption of memristive chaotic system with coexistence bubble 2025 Chin. Phys. B 34 040203

[1] Chua L 1971 IEEE Transactions on Circuit Theory 18 507
[2] Cao Y, Cao Y, Guo Z, Huang T and Wen S 2020 Neural Networks 123 70
[3] Lin H, Wang C, Deng Q, Xu C, Deng Z and Zhou C 2021 Nonlinear Dynam. 106 959
[4] Lian X J, Fu J K, Gao Z X, Gu S P and Wang L 2023 Chin. Phys. B 32 017304
[5] Ding D W, Niu Y, Zhang H W, Yang Z L, Wang J, Wang W and Wang M Y 2024 Chin. Phys. B 33 050503
[6] Wu R, Gao S, Wang X, Liu S, Li Q, Erkan U and Tang X 2022 Chaos Soliton. Fract. 165 112770
[7] Li X X, He Q Q, Yu T Y, Cai Z and Xu G Z 2024 Chin. Phys. B 33 030505
[8] Ye X, Wang X, Gao S, Mou J, Wang Z and Yang F 2020 Nonlinear Dynam. 99 1489
[9] Kengne L K, Pone J R M and Fotsin H B 2021 Chaos Soliton. Fract. 145 110795
[10] Minati L, Gambuzza L V, Thio W J, Sprott J C and Frasca M 2020 Chaos Soliton. Fract. 138 109990
[11] Wang X, Banerjee S, Cao Y H and Mou J 2024 Chin. Phys. B 33 100501
[12] Yu F, Liu L, Qian S, Li L, Huang Y, Shi C, Cai S,Wu X, Du S andWan Q 2020 Complexity 2020 8034196
[13] Bao H, Chen M, Wu H and Bao B 2020 Science China Technological Sciences 63 603
[14] Li Y, Liu J, Hao Z, Liu H and Zhang X 2024 The European Physical Journal Plus 139 168
[15] Zhang S, Zheng J,Wang X and Zeng Z 2021 Chaos Soliton. Fract. 145 110761
[16] Zhang S, Zhang H andWang C 2023 Chaos Soliton. Fract. 174 113885
[17] Yu F, Lin Y, Yao W, Cai S, Lin H and Li Y 2025 Neural Networks 182 106904
[18] Zhang S, Li C, Zheng J, Wang X, Zeng Z and Peng X 2021 IEEE Transactions on Industrial Electronics 69 7202
[19] Lai Q and Chen Z 2023 Chaos Soliton. Fract. 170 113341
[20] Zhang Y, Liu Z, Wu H, Chen S and Bao B 2019 Chaos Soliton. Fract. 127 354
[21] Bao B C, Bao H, Wang N, Chen M and Xu Q 2017 Chaos Soliton. Fract. 94 102
[22] Bao B, Jiang T, Wang G, Jin P, Bao H and Chen M 2017 Nonlinear Dynam. 89 1157
[23] Chang H, Li Y, Yuan F and Chen G 2019 International Journal of Bifurcation and Chaos 29 1950086
[24] Dou G, Liu J, Zhang M, Zhao K and Guo M 2022 The European Physical Journal Special Topics 231 3151
[25] Ma J, Chen Z, Wang Z and Zhang Q 2015 Nonlinear Dynam. 81 1275
[26] Sprott J C 1994 Phys. Rev. E 50 R647
[27] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285
[28] Zhang S and Zeng Y 2019 Chaos Soliton. Fract. 120 25
[29] Leutcho G D, Kengne J, Kengne L K, Akgul A, Pham V T and Jafari S 2020 Physica Scripta 95 075216
[30] Njitacke Z T and Kengne L K 2017 Chaos Soliton. Fract. 105 77
[31] Bao B, Peol M A, Bao H, Chen M, Li H and Chen B 2021 Chaos Soliton. Fract. 144 110744
[32] Qi A, Muhammad K and Liu S 2021 Fractals 29 2140020
[33] Li X, Sun S, Yang Z and Li J 2023 Physica Scripta 98 115212
[34] Deng Y and Li Y 2021 Chaos Soliton. Fract. 150 111064
[35] Wang N, Zhang G and Bao H 2019 Nonlinear Dynam. 97 1477
[36] Gu W Y Wang G Y Dong Y J and Ying J J 2020 Chin. Phys. B 29 110503
[37] Lin H,Wang C, Chen C, Sun Y, Zhou C, Xu C and Hong Q 2021 IEEE Transactions on Circuits and Systems I: Regular Papers 68 3397
[38] Zhang S, Zeng Y, Li Z, Wang M and Xiong L 2018 Chaos 28 013113
[39] Yuan Y, Yu F, Tan B, Huang Y, YaoW, Cai S and Lin H 2025 Chaos 35 013121
[40] Gao X, Sun B, Cao Y, Banerjee S and Mou J 2023 Chin. Phys. B 32 030501
[41] Yan X, Wang X and Xian Y 2021 Multimedia Tools and Applications 80 10949
[42] Wan Y, Gu S and Du B 2020 Entropy 22 171
[43] Chai X, Fu X, Gan Z, Lu Y and Chen Y 2019 Signal Processing 155 44
[44] Wu J, Liao X and Yang B 2017 Signal Processing 141 109
[1] Multiple mixed state variable incremental integration for reconstructing extreme multistability in a novel memristive hyperchaotic jerk system with multiple cubic nonlinearity
Meng-Jiao Wang(王梦蛟) and Lingfang Gu(辜玲芳). Chin. Phys. B, 2024, 33(2): 020504.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] Continuous non-autonomous memristive Rulkov model with extreme multistability
Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成). Chin. Phys. B, 2021, 30(12): 128702.
No Suggested Reading articles found!