Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 076402    DOI: 10.1088/1674-1056/23/7/076402
Special Issue: TOPICAL REVIEW — Statistical Physics and Complex Systems
TOPICAL REVIEW—Statistical Physics and Complex Systems Prev   Next  

Percolation on networks with dependence links

Li Ming (李明)a, Wang Bing-Hong (汪秉宏)a b c
a Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China;
c School of Science, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  As a classical model of statistical physics, the percolation theory provides a powerful approach to analyze the network structure and dynamics. Recently, to model the relations among interacting agents beyond the connection of the networked system, the concept of dependence link is proposed to represent the dependence relationship of agents. These studies suggest that the percolation properties of these networks differ greatly from those of the ordinary networks. In particular, unlike the well known continuous transition on the ordinary networks, the percolation transitions on these networks are discontinuous. Moreover, these networks are more fragile for a broader degree distribution, which is opposite to the famous results for the ordinary networks. In this article, we give a summary of the theoretical approaches to study the percolation process on networks with inter- and inner-dependence links, and review the recent advances in this field, focusing on the topology and robustness of such networks.
Keywords:  percolation      network      dependence link      phase transition  
Received:  11 March 2014      Revised:  17 March 2014      Accepted manuscript online: 
PACS:  64.60.ah (Percolation)  
  89.75.Hc (Networks and genealogical trees)  
  64.60.aq (Networks)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275186 and 91024026).
Corresponding Authors:  Wang Bing-Hong     E-mail:  bhwang@ustc.edu.cn
About author:  64.60.ah; 89.75.Hc; 64.60.aq; 89.75.Fb

Cite this article: 

Li Ming (李明), Wang Bing-Hong (汪秉宏) Percolation on networks with dependence links 2014 Chin. Phys. B 23 076402

[1] Newman M E J 2010 Networks: An Introduction (New York: Oxford University Press)
[2] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[3] Cohen R and Havlin S 2010 Complex Networks: Structure, Robustness and Function (Cambridge: Cambridge University Press)
[4] Albert R, Jeong H and Barabási A L 2000 Nature 406 378
[5] Cohen R, Erez K, Ben-Avraham D and Havlin S 2000 Phys. Rev. Lett. 85 4626
[6] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468
[7] Cohen R, Erez K, Ben-Avraham D and Havlin S 2001 Phys. Rev. Lett. 86 3682
[8] Parshani R, Buldyrev S V and Havlin S 2011 Proc. Natl. Acad. Sci. USA 108 1007
[9] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 464 1025
[10] Wiff H 1994 Generatingfunctionology (London: Academic)
[11] Newman M E J, Strogatz S H and Watts D J 2001 Phys. Rev. E 64 026118
[12] Newman M E J 2002 Phys. Rev. E 66 016128
[13] Son S W, Grassberger P and Paczuski M 2011 Phys. Rev. Lett. 107 195702
[14] Son S W, Bizhani G, Christensen C, Grassberger P and Paczuski M 2012 Europhys. Lett. 97 16006
[15] Newman M E J 2003 Social Networks 25 83
[16] Berchenko Y, Artzy-Randrup Y, Teicher M and Stone L 2009 Phys. Rev. Lett. 102 138701
[17] Baxter G J, Dorogovtsev S N, Goltsev A V and Mendes J F F 2012 Phys. Rev. Lett. 109 248701
[18] Newman M E J 2003 Phys. Rev. E 67 026126
[19] Vázquez A and Moreno Y 2003 Phys. Rev. E 67 015101
[20] Zhou D, Stanley H E, D'Agostino G and Scala A 2012 Phys. Rev. E 86 066103
[21] Newman M E J 2009 Phys. Rev. Lett. 103 058701
[22] Huang X, Shao S, Wang H, Buldyrev S V, Stanley H E and Havlin S 2013 Europhys. Lett. 101 18002
[23] Li W, Bashan A, Buldyrev A V, Stanley H E and Havlin S 2012 Phys. Rev. Lett. 108 228702
[24] Bashan A, Berezin Y, Buldyrev S V and Havlin S 2013 Nat. Phys. 9 667
[25] Buldyrev A V, Shere N W and Cwilich G A 2011 Phys. Rev. E 83 016112
[26] Parshani R, Rozenblat C, Ietri D, Ducruet C and Havlin S 2010 Europhys. Lett. 92 68002
[27] Hu Y, Zhou D, Zhang R, Han Z, Rozenblat C and Havlin S 2013 Phys. Rev. E 88 052805
[28] Cellai D, López E, Zhou J, Gleeson J P and Bianconi G 2013 Phys. Rev. E 88 052811
[29] Li M, Liu R R, Jia C X and Wang B H 2013 New J. Phys. 15 093013
[30] Parshani R, Buldyrev S V and Havlin S 2010 Phys. Rev. Lett. 105 048701
[31] Zhou D, Gao J, Stanley H E and Havlin S 2013 Phys. Rev. E 87 052812
[32] Valdez L D, Macri P A, Stanley H E and Braunstein L A 2013 Phys. Rev. E 88 050803
[33] Shao J, Buldyrev S V, Havlin S and Stanley H E 2011 Phys. Rev. E 83 036116
[34] Bashan A, Parshani R and Havlin S 2011 Phys. Rev. E 83 051127
[35] Bashan A and Havlin S 2011 J. Stat. Phys. 145 686
[36] Huang X, Gao J, Buldyrev S V, Havlin S and Stanley H E 2011 Phys. Rev. E 83 065101
[37] Dong G, Gao J, Tian L, Du R and He Y 2012 Phys. Rev. E 85 016112
[38] Zhou D, Gao J, Stanley H E and Havlin S 2013 Phys. Rev. E 87 052812
[39] Gao J, Buldyrev S V, Havlin S and Stanley H E 2011 Phys. Rev. Lett. 107 195701
[40] Gao J, Buldyrev S V, Havlin S and Stanley H E 2012 Nat. Phys. 8 40
[41] Gao J, Buldyrev S V, Stanley H E, Xu X and Havlin S 2013 Phys. Rev. E 88 062816
[42] Brummitt C D, Lee K M and Goh K I 2012 Phys. Rev. E 85 045102
[43] Nicosia V, Bianconi G, Latora V and Barthelemy M 2013 Phys. Rev. Lett. 111 058701
[44] Kim J Y and Goh K I 2013 Phys. Rev. Lett. 111 058702
[45] De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter M A, Gómez S and Arenas A 2013 Phys. Rev. X 3 041022
[46] Bianconi G 2013 Phys. Rev. E 87 062806
[47] Halu A, Mukherjee S and Bianconi G 2014 Phys. Rev. E 89 012806
[48] Watanabe S and Kabashima Y 2014 Phys. Rev. E 89 012808
[49] D'Agostino G and Scala A 2014 Networks of Networks: The Last Frontier of Complexity (Berlin: Springer International Publishing)
[50] Leicht E A and D'Souza R M 2009 arXiv:0907.0894
[51] Newman M E J 2012 Nat. Phys. 8 25
[52] Hu Y, Ksherim B, Cohen R and Havlin S 2011 Phys. Rev. E 84 066116
[53] Li M, Liu R R, Jia C X and Wang B H 2014 (unpublished)
[54] Saumell-Mendiola A, Serrano M Á and Boguuñá M 2012 Phys. Rev. E 86 026106
[55] Wang H, Li Q, D'Agostino G, Havlin S, Stanley H E and Van Mieghem P 2013 Phys. Rev. E 88 022801
[56] Gómez S, Díaz-Guilera A, Gómez-Gardeñes J, Pérez-Vicente C J, Moreno Y and Arenas A 2013 Phys. Rev. Lett. 110 028701
[57] Gómez-Gardeñes J, Reinares I, Arenas A and Floria L M 2013 Sci. Rep. 2 00620
[58] Zhen W, Attila S and Perc M 2013 Sci. Rep. 3 01183
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[6] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[7] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[8] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[9] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[10] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[11] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[12] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[13] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[14] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[15] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
No Suggested Reading articles found!