Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 128902    DOI: 10.1088/1674-1056/ad84c2
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Hyperbolic map unravels eight regions in temperature volatility regionalization of Mainland China

Yuxuan Song(宋雨轩)1, Changgui Gu(顾长贵)1,†, Muhua Zheng(郑木华)2, Aixia Feng(冯爱霞)3, Yufei Xi(席雨菲)1, Haiying Wang(王海英)1, and Huijie Yang(杨会杰)1
1 School of Management, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China;
3 National Meteorological Information Center, China Meteorological Administration, Beijing 100081, China
Abstract  Abrupt temperature volatility has detrimental effects on daily activities, macroeconomic growth, and human health. Predicting abrupt temperature volatility and thus diminishing its negative impacts can be achieved by exploring homogeneous regions of temperature volatility and analyzing the driving factors. To investigate the regionalization of temperature volatility in Mainland China, a network constructed by the cosine similarity of temperature volatility series from Mainland China was embedded in hyperbolic space. Subsequently, we partitioned the network on the hyperbolic map using the critical gap method and then found eight regions in all. Ultimately, a network of communities was constructed while the interaction among communities was quantified. This yields a perspective of temperature volatility regionalization that can accurately reflect factors including altitude, climate type, and the geographic location of mountains. Further analysis demonstrates that the regionalization in the hyperbolic map is distinct from provinces and has a realistic basis: communities in southwest China show strong correlations due to the temperature sensitivity to altitude, and communities in northern China show a convergence in the area of Dingxi, Gansu, mainly owing to the strong temperature sensitivity to climate types. As a consequence, node distributions and community divisions in the hyperbolic map can offer new insights into the regionalization of temperature volatility in Mainland China. The results demonstrate the potential of hyperbolic embedding of complex networks in forecasting future node associations in real-world data.
Keywords:  complex network      hyperbolic embedding      community detection      regionalization  
Received:  03 July 2024      Revised:  05 September 2024      Accepted manuscript online:  09 October 2024
PACS:  89.75.-k (Complex systems)  
  89.60.-k (Environmental studies)  
  92.60.Ry (Climatology, climate change and variability)  
  92.70.Aa (Abrupt/rapid climate change)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275179, 12005079, and 41975100), the Shanghai Natural Science Foundation of China (Grant No. 21ZR1443900), Natural Science Foundation of Jiangsu Province (Grant No. BK20220511), the funding for Scientific Research Startup of Jiangsu University (Grant No. 4111710001), and the Joint Research Project for Meteorological Capacity Improvement (Grant No. 22NLTSZ004).
Corresponding Authors:  Changgui Gu     E-mail:  gu_changgui@163.com

Cite this article: 

Yuxuan Song(宋雨轩), Changgui Gu(顾长贵), Muhua Zheng(郑木华), Aixia Feng(冯爱霞), Yufei Xi(席雨菲), Haiying Wang(王海英), and Huijie Yang(杨会杰) Hyperbolic map unravels eight regions in temperature volatility regionalization of Mainland China 2024 Chin. Phys. B 33 128902

[1] Donadelli M, Jüppner M, Paradiso A and Schlag C 2019 University Ca’ Foscari of Venice, Dept. of Economics Research Paper Series 05/WP/2019
[2] Zhan Z, Zhao Y, Pang S, Zhong X, Wu C and Ding Z 2017 Science of The Total Environment 584-585 1152
[3] Guo Y, Barnett AG, Yu W, Pan X, Ye X, Huang C and Tong S 2011 PLoS One 6 e16511
[4] Cheng J, Zhu R, Xu Z, Xu X, Wang X, Li K and Su H 2014 International Journal of Public Health 59 923
[5] Trombley J, Chalupka S and Anderko L 2017 AJN, American Journal of Nursing 117 44
[6] Pińskwar I, Choryński A and Graczyk D 2023 International Journal of Biometeorology 68 317
[7] Kotz M, Wenz L, Stechemesser A, Kalkuhl M and Levermann A 2021 Nature Climate Change 11 319
[8] Ombadi M and Risser M D 2022 Weather and Climate Extremes 38 100515
[9] Mondal S, Mishra A K and Leung L R 2020 Geophysical Research Letters 47 e2020GL088185
[10] Konapala G and Mishra A K 2017 Journal of Hydrology 555 600
[11] Feng A X, et al. 2022 Chin. Phys. B 31 049201
[12] Mondal S and Mishra A K 2021 Geophysical Research Letters 48 e2020GL090411
[13] Tsonis A A, Swanson K L and Roebber P J 2006 Bulletin of the American Meteorological Society 87 585
[14] Tsonis A A and Roebber P J 2004 Physica A 333 497
[15] Gao M, Wang Z, Ning J and Wang Y 2023 Chaos, Solitons & Fractals 173 113650
[16] Boers N, Bookhagen B, Barbosa H M, Marwan N, Kurths J and Marengo J A 2014 Nat. Commun. 5 5199
[17] He S H, Wang J P, Li X M and Zhang Y X 2014 Chin. Phys. B 23 059202
[18] Li K, Wang M and Liu K 2021 International Journal of Climatology 42 4445
[19] Meng J, Fan J, Ashkenazy Y, Bunde A and Havlin S 2018 New J. Phys. 20 043036
[20] Deza JI, Barreiro M and Masoller C 2015 Chaos 25 033105
[21] Tsonis AA 2007 Geophysical Research Letters 34
[22] Mallick J, Talukdar S, Almesfer M K, et al. 2022 Environmental Science and Pollution Research 29 25112
[23] Yang T, Xu C Y, Shao Q X and Chen X 2009 Stochastic Environmental Research and Risk Assessment 24 165
[24] El Kenawy A, López-Moreno JI and Vicente-Serrano S M 2013 Theoretical and Applied Climatology 113 387
[25] Yu Y, Shao Q and Lin Z 2018 Journal of Hydrology 564 149
[26] Agarwal A, Marwan N, Maheswaran R, Merz B and Kurths J 2018 Journal of Hydrology 563 802
[27] Agarwal A, Marwan N, Ozturk U and Maheswaran R 2019 Water Resources and Environmental Engineering II 17 179
[28] Gao C, Liu L, Zhang S, Xu Y P,Wang X and Tang X 2023 Atmospheric Research 292 106874
[29] Wang G L and Tsonis A A 2009 Chin. Phys. B 18 5149
[30] Shi P, Sun S, Wang M, Li N, Wang J, Jin Y, Gu X and Yin W 2014 Science China Earth Sciences 57 2676
[31] Krioukov D, Papadopoulos F, Kitsak M, Vahdat A and BoguñáM2010 Phys. Rev. E 82 036106
[32] Krioukov D, Papadopoulos F, Vahdat A and BoguñáM2009 Phys. Rev. E 80 035101
[33] Chamberlain B P, Clough J and Deisenroth M P 2017 arXiv cs.LG 1705.10359
[34] García-Pérez G, Boguñá M, Allard A and Serrano M A 2016 Scientific Reports 6 33441
[35] Bruno M, Sousa Sandro F, Gursoy F, Serafino M, Vianello F V, Vranic A and Boguna M 2019 arXiv:1906.09082
[36] Wang X, Zhang Y and Shi C 2019 Proceedings of the AAAI Conference on Artificial Intelligence 33 5337
[37] Boguná M, Papadopoulos F and Dmitri K 2010 Nat. Commun. 1 62
[38] Papadopoulos F, Kitsak M, Serrano M Á, Mariań B and Dmitri K 2012 Nature 489 537
[39] Serrano M A, Krioukov D and Boguñá M 2008 Phys. Rev. Lett. 100 078701
[40] Wu J, Zhang X, Gu C, Bi H, Xu K and Zheng M 2023 Nonlinear Dyn. 111 18493
[41] García-Pérez G, Allard A, Serrano M A and Boguñá M 2019 New J. Phys. 21 123033
[42] Ortiz E and Serrano M A 2022 Chaos, Solitons & Fractals 165 112847
[43] Yang W, Yang H and Yang D 2019 Journal of Hydrology 576 726
[44] Sun A Y, Xia Y, Caldwell T G and Hao Z 2018 Advances in Water Resources 112 203
[45] Dong D, Huang G, Qu X, Tao W and Fan G 2014 Theoretical and Applied Climatology 122 285
[46] Zhai P and Ren F 1997 Acta Meteorologica Sinica 4 418
[1] Detecting the core of a network by the centralities of the nodes
Peijie Ma(马佩杰), Xuezao Ren(任学藻), Junfang Zhu(朱军芳), and Yanqun Jiang(蒋艳群). Chin. Phys. B, 2024, 33(8): 088903.
[2] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[3] Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强). Chin. Phys. B, 2024, 33(5): 050201.
[4] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[5] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[6] A multilayer network diffusion-based model for reviewer recommendation
Yiwei Huang(黄羿炜), Shuqi Xu(徐舒琪), Shimin Cai(蔡世民), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2024, 33(3): 038901.
[7] Impact of different interaction behavior on epidemic spreading in time-dependent social networks
Shuai Huang(黄帅), Jie Chen(陈杰), Meng-Yu Li(李梦玉),Yuan-Hao Xu(徐元昊), and Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2024, 33(3): 030205.
[8] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[9] Identify information sources with different start times in complex networks based on sparse observers
Yuan-Zhang Deng(邓元璋), Zhao-Long Hu(胡兆龙), Feilong Lin(林飞龙), Chang-Bing Tang(唐长兵), Hui Wang(王晖), and Yi-Zhen Huang(黄宜真). Chin. Phys. B, 2024, 33(11): 118901.
[10] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[11] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[12] Synchronization of stochastic complex networks with time-delayed coupling
Duolan(朵兰), Linying Xiang(项林英), and Guanrong Chen(陈关荣). Chin. Phys. B, 2023, 32(6): 060502.
[13] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[14] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[15] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
No Suggested Reading articles found!