Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117504    DOI: 10.1088/1674-1056/ad84c9
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

A hybrid method integrating Green's function Monte Carlo and projected entangled pair states

He-Yu Lin(林赫羽)1,2, Rong-Qiang He(贺荣强)1,2,†, Yibin Guo (郭奕斌)3,‡, and Zhong-Yi Lu(卢仲毅)1,2,4,§
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China;
3 CQTA, Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany;
4 Hefei National Laboratory, Hefei 230088, China
Abstract  This paper introduces a hybrid approach combining Green's function Monte Carlo (GFMC) method with projected entangled pair state (PEPS) ansatz. This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC. By leveraging PEPS's proficiency in capturing quantum state entanglement and GFMC's efficient parallel architecture, the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems. As a benchmark, we applied this approach to study the frustrated $J_1$-$J_2$ Heisenberg model on a square lattice with periodic boundary conditions (PBCs). Compared with other numerical methods, our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy. This paper provides systematic and comprehensive discussion of the approach of our previous work [Phys. Rev. B 109 235133 (2024)].
Keywords:  projected entangled pair states      Green's function Monte Carlo      frustrated $J_1$-$J_2$ Heisenberg model  
Received:  26 July 2024      Revised:  28 September 2024      Accepted manuscript online:  09 October 2024
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  02.70.Ss (Quantum Monte Carlo methods)  
  05.10.Cc (Renormalization group methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11934020) and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302402).
Corresponding Authors:  Rong-Qiang He, Yibin Guo, Zhong-Yi Lu     E-mail:  rqhe@ruc.edu.cn;yibin.guo@desy.de;zlu@ruc.edu.cn

Cite this article: 

He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), Yibin Guo (郭奕斌), and Zhong-Yi Lu(卢仲毅) A hybrid method integrating Green's function Monte Carlo and projected entangled pair states 2024 Chin. Phys. B 33 117504

[1] Lin H Y, Guo Y, He R Q, Xie Z Y and Lu Z Y 2024 Phys. Rev. B 109 235133
[2] Trivedi N and Ceperley D M 1989 Phys. Rev. B 40 2737
[3] Trivedi N and Ceperley D M 1990 Phys. Rev. B 41 4552
[4] Verstraete F, Murg V and Cirac J I 2008 Adv. Phys. 57 143
[5] Or′us R 2019 Nature Reviews Physics 1 538
[6] Cirac J I, Pérez-García D, Schuch N and Verstraete F 2021 Rev. Mod. Phys. 93 045003
[7] Bañuls M C 2023 Annu. Rev. Condens. Matter Phys. 14 173
[8] Xiang T 2023 Density Matrix and Tensor Network Renormalization (Cambridge University Press)
[9] Nightingale M P and Umrigar C J 1998 Quantum Monte Carlo methods in physics and chemistry (Springer Science & Business Media)
[10] Becca F and Sorella S 2017 Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press) p. 167
[11] ten Haaf D F B, van Bemmel H J M, van Leeuwen J M J, van Saarloos W and Ceperley D M 1995 Phys. Rev. B 51 13039
[12] Sorella S and Capriotti L 2000 Phys. Rev. B 61 2599
[13] Reynolds P J, Ceperley D M, Alder B J and Lester W A 1982 The Journal of Chemical Physics 77 5593
[14] Montangero S 2018 Introduction to Tensor Network Methods (Springer Nature) Chaps. 5 and 6
[15] Verstraete F and Cirac J I arXiv:cond-mat/0407066
[16] Or′us R 2014 Ann. Phys. 349 117
[17] Xie Z Y, Liao H J, Huang R Z, Xie H D, Chen J, Liu Z Y and Xiang T 2017 Phys. Rev. B 96 045128
[18] Yang L P, Fu Y F, Xie Z Y and Xiang T 2023 Phys. Rev. B 107 165127
[19] Or′us R 2014 Eur. Phys. J. B 87 280
[20] du Croo de Jongh M S L, van Leeuwen J M J and van Saarloos W 2000 Phys. Rev. B 62 14844
[21] Clark B K and Changlani H J arXiv:1404.2296
[22] Wouters S, Verstichel B, Van Neck D and Kin-Lic Chan G 2014 Phys. Rev. B 90 045104
[23] Qin M P 2020 Phys. Rev. B 102 125143
[24] Lin H Y, He R Q and Lu Z Y 2022 Chin. Phys. B 31 080203
[25] Zhang G M, Hu H and Yu L 2003 Phys. Rev. Lett. 91 067201
[26] Mezzacapo F 2012 Phys. Rev. B 86 045115
[27] Jiang H C, Yao H and Balents L 2012 Phys. Rev. B 86 024424
[28] Hu W J, Becca F, Parola A and Sorella S 2013 Phys. Rev. B 88 060402
[29] Morita S, Kaneko R and Imada M 2015 J. Phys. Soc. Jpn. 84 024720
[30] Wang L and Sandvik A W 2018 Phys. Rev. Lett. 121 107202
[31] Ferrari F and Becca F 2020 Phys. Rev. B 102 014417
[32] Liu W Y, Gong S S, Li Y B, Poilblanc D, Chen W Q and Gu Z C 2022 Science Bulletin 67 1034
[33] Wang L, Poilblanc D, Gu Z C, Wen X G and Verstraete F 2013 Phys. Rev. Lett. 111 037202
[34] Liu W Y, Dong S, Wang C, Han Y, An H, Guo G C and He L 2018 Phys. Rev. B 98 241109
[35] Schulz H J, Ziman T A L and Poilblanc D 1996 Journal de Physique I 6 675
[36] Choo K, Neupert T and Carleo G 2019 Phys. Rev. B 100 125124
[37] Nomura Y and Imada M 2021 Phys. Rev. X 11 031034
[38] Anderson J B 1975 The Journal of Chemical Physics 63 1499
[39] Verstraete F, Porras D and Cirac J I 2004 Phys. Rev. Lett. 93 227205
[40] Liao H J, Liu J G, Wang L and Xiang T 2019 Phys. Rev. X 9 031041
[41] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Phys. Rev. B 86 045139
[42] Buonaura M C and Sorella S 1998 Phys. Rev. B 57 11446
[43] Sandvik A W 1997 Phys. Rev. B 56 11678
[44] Néel L 1936 Ann. Phys. 11 232
[45] Néel L 1932 J. Phys. Radium 3 160
[46] Singh R R P, Zheng W H, Hamer C J and Oitmaa J 1999 Phys. Rev. B 60 7278
[47] Takano K, Kito Y, Ōno Y and Sano K 2003 Phys. Rev. Lett. 91 197202
[48] Mambrini M, Läuchli A, Poilblanc D and Mila F 2006 Phys. Rev. B 74 144422
[49] Darradi R, Derzhko O, Zinke R, Schulenburg J, Krüger S E and Richter J 2008 Phys. Rev. B 78 214415
[50] Murg V, Verstraete F and Cirac J I 2009 Phys. Rev. B 79 195119
[51] Haghshenas R and Sheng D N 2018 Phys. Rev. B 97 174408
[52] Hasik J, Poilblanc D and Becca F 2021 SciPost Phys. 10 012
[53] Qian X J and Qin M P 2024 Phys. Rev. B 109 L161103
[54] Zhitomirsky M E and Ueda K 1996 Phys. Rev. B 54 9007
[55] Capriotti L and Sorella S 2000 Phys. Rev. Lett. 84 3173
[56] Isaev L, Ortiz G and Dukelsky J 2009 Phys. Rev. B 79 024409
[57] Yu J F and Kao Y J 2012 Phys. Rev. B 85 094407
[58] Doretto R L 2014 Phys. Rev. B 89 104415
[59] Chubukov A V and Jolicoeur T 1991 Phys. Rev. B 44 12050
[60] Gong S S, Zhu W, Sheng D N, Motrunich O I and Fisher M P A 2014 Phys. Rev. Lett. 113 027201
[61] Zhang X Y, Chi R Z, Liu Y and Wang L 2024 Phys. Rev. B 109 075129
[62] A direct power fitting of the data in Fig. 3 gives extrapolated values -0.50376(4) (J2 = 0.5) and -0.49506(55) (J2 = 0.55) in the large-D limit, which agree very well the exact values -0.50381 and -0.495178 in Ref.
[35].
[63] Chen A and Heyl Markus 2024 Nat. Phys. 20 1476
[64] Ledinauskas E and Anisimovas E 2023 SciPost Phys. 15 229
[65] Szabó A and Castelnovo C 2020 Phys. Rev. Res. 2 033075
[66] Liang X, Liu W Y, Lin P Z, Guo G C, Zhang Y S and He L 2018 Phys. Rev. B 98 104426
[67] Wang J Q, Wu H Q, He R Q and Lu Z Y 2024 Phys. Rev. B 109 245120
[68] Ferrari F, Becca F and Carrasquilla J 2019 Phys. Rev. B 100 125131
[69] Reh M, Schmitt M and Gärttner M 2023 Phys. Rev. B 107 195115
[70] Chen H, Hendry D, Weinberg P and Feiguin A 2023 Advances in Neural Information Processing Systems (Curran Associates, Inc.) pp. 7490–7503
[71] Li M, Chen J, Xiao Q, Wang F, Jiang Q, Zhao X, Lin R, An H, Liang X and He L 2022 IEEE Transactions on Parallel and Distributed Systems 33 2846
[72] Liang X, Dong S J and He L 2021 Phys. Rev. B 103 035138
[73] Liang X, Li M, Xiao Q, Chen J, Yang C, An H and He L 2023 Machine Learning: Science and Technology 4 015035
[74] Rende R, Viteritti L L, Bardone L, Becca F and Goldt S arXiv:2310.05715
[75] Chen B B, Gao Y, Guo Y B, Liu Y, Zhao H H, Liao H J, Wang L, Xiang T, Li W and Xie Z Y 2020 Phys. Rev. B 101 220409
[76] Xie Z Y, Chen J, Yu J F, Kong X, Normand B and Xiang T 2014 Phys. Rev. X 4 011025
[77] Sandvik A W and Vidal G 2007 Phys. Rev. Lett. 99 220602
[78] Liu W Y, Huang Y Z, Gong S S and Gu Z C 2021 Phys. Rev. B 103 235155
[1] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[2] Low-energy spin dynamics in a Kitaev material Na3Ni2BiO6 investigated by nuclear magnetic resonance
Xinyu Shi(史昕雨), Yi Cui(崔祎), Yanyan Shangguan(上官艳艳), Xiaoyu Xu(徐霄宇), Zhanlong Wu(吴占龙), Ze Hu(胡泽), Shuo Li(李硕), Kefan Du(杜柯帆), Ying Chen(陈颖), Long Ma(马龙), Zhengxin Liu(刘正鑫), Jinsheng Wen(温锦生), Jinshan Zhang(张金珊), and Weiqiang Yu(于伟强). Chin. Phys. B, 2024, 33(6): 067601.
[3] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[4] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[5] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln=Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[6] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[7] Gauss quadrature based finite temperature Lanczos method
Jian Li(李健) and Hai-Qing Lin(林海青). Chin. Phys. B, 2022, 31(5): 050203.
[8] Structure and frustrated magnetism of the two-dimensional triangular lattice antiferromagnet Na2BaNi(PO4)2
Fei Ding(丁飞), Yongxiang Ma(马雍翔), Xiangnan Gong(公祥南), Die Hu(胡蝶), Jun Zhao(赵俊), Lingli Li(李玲丽), Hui Zheng(郑慧), Yao Zhang(张耀), Yongjiang Yu(于永江), Lichun Zhang(张立春), Fengzhou Zhao(赵风周), and Bingying Pan(泮丙营). Chin. Phys. B, 2021, 30(11): 117505.
[9] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[10] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[11] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[12] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[13] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[14] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[15] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
No Suggested Reading articles found!