Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 114301    DOI: 10.1088/1674-1056/ad7724
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An analogical study of wave equations, physical quantities, conservation and reciprocity equations between electromagnetic and elastic waves

Yuchen Zang(臧雨宸)†
School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
Abstract  This paper presents an analogical study between electromagnetic and elastic wave fields, with a one-to-one correspondence principle established regarding the basic wave equations, the physical quantities and the differential operations. Using the electromagnetic-to-elastic substitution, the analogous relations of the conservation laws of energy and momentum are investigated between these two physical fields. Moreover, the energy-based and momentum-based reciprocity theorems for an elastic wave are also derived in the time-harmonic state, which describe the interaction between two elastic wave systems from the perspectives of energy and momentum, respectively. The theoretical results obtained in this analysis can not only improve our understanding of the similarities of these two linear systems, but also find potential applications in relevant fields such as medical imaging, non-destructive evaluation, acoustic microscopy, seismology and exploratory geophysics.
Keywords:  analogical study      electromagnetic waves      elastic waves      wave equations      physical quantities      conservation laws      reciprocity theorems  
Received:  28 June 2024      Revised:  16 August 2024      Accepted manuscript online:  04 September 2024
PACS:  43.20.Wd (Analogies)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  46.40.-f (Vibrations and mechanical waves)  
Fund: This work was funded by the National Natural Science Foundation of China (Grant No. 12404507), the Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 24KJB140013), and the Scientific Startup Foundation of Nanjing Normal University (Grant No. 184080H201B49).
Corresponding Authors:  Yuchen Zang     E-mail:  zangyuchen@nnu.edu.cn

Cite this article: 

Yuchen Zang(臧雨宸) An analogical study of wave equations, physical quantities, conservation and reciprocity equations between electromagnetic and elastic waves 2024 Chin. Phys. B 33 114301

[1] Carcione J M and Cavallini F 1995 Wave Motion 21 149
[2] Pronic O R, Markovic V V and Milovanovic B D 1998 Melecon’98-9th Mediterranean Electrotechnical Conference 1&2 241
[3] Carcione J M and Robinson E A 2002 Stud. Geophys. Geod. 46 321
[4] Dukata A and Kapelewski J 2008 Acta Phys. Pol. A 114 A69
[5] Burns L, Bliokh K Y, Nori F and Dressel J 2020 New J. Phys. 22 053050
[6] Lafarge D 2021 Top. Appl. Phys. 143 205
[7] Liu G Q and Liu J 2024 Acoustic Reciprocity Theorems (Beijing: Science Press) (in Chinese)
[8] Lorentz H A 1896 Amsterdammer Akademie der Wetenschappen 4 176
[9] Carson J R 1924 Bell Syst. Tech. J. 3 393
[10] Carson J R 1939 Bell Syst. Tech. J. 9 325
[11] Crowley T H 1954 J. Appl. Phys. 25 119
[12] Welch W J 1960 IEEE Trans. Antennas. Propag. 8 68
[13] de Hoop A T 1987 Radio Sci. 22 1171
[14] Tai C T 1992 IEEE Trans. Antennas Propag. 40 675
[15] Afanasiev G N 2001 J. Phys. D-Appl. Phys. 34 539
[16] Liu G Q, Li Y Y and Liu J 2020 IEEE Antennas Wirel. Propag. Lett. 19 2159
[17] Lord Rayleigh 1894 The Theory of Sound (London: Macmillan)
[18] Bojarski N N 1983 J. Acoust. Soc. Am. 74 281
[19] Fischer M and Langenberg K J 1984 IEEE Trans. Antennas Propag. 32 1080
[20] de Hoop A T 1988 J. Acoust. Soc. Am. 84 1877
[21] de Hoop A T and Stam H J 1988 Wave Motion 10 479
[22] de Hoop A T 1990 J. Acoust. Soc. Am. 87 1932
[23] Wapenaar C P A and Grimbergen J L T 1996 Geophys. J. Int. 127 169
[24] Wapenaar C P A, Dillen M W P and Fokkema J T 2001 Radio Sci. 36 851
[25] Lin J, Li J, Li X L and Wang N 2016 J. Acoust. Soc. Am. 140 EL346
[26] Li X L, Wang N, Gao D Z and Li Q 2018 Chin. Phys. Lett. 35 114301
[27] Zou M S, Liu S X and Li L B 2019 Appl. Acoust. 154 18
[28] Zhang H and Lin Z Y 2023 Eng. Fract. Mech. 277 108996
[29] Liu H J, Li Y H and Liu G Q 2023 IEEE Trans. Biomed. Eng. 70 1741
[30] Marchetto C, Maxit L, Robin O and Berry A 2017 J. Acoust. Soc. Am. 141 4508
[31] Macgillivray I and Skvortsov A 2024 J. Acoust. Soc. Am. 155 2891
[32] Varatharajulu V 1977 J. Math. Phys. 18 537
[33] Achenbach J D 2007 J. Therm. Stresses 30 841
[34] Petrov P V and Newman G A 2019 Geophysics 84 R963
[35] Van Bladel J G 1985 Electromagnetic Fields (New York: Wiley-IEEE)
[36] Auld B A 1975 Acoustic Fields and Waves in Solids (New York: John Wiley)
[37] Achenbach J D 2003 Reciprocity in Elastodynamics (Cambridge: Cambridge University Press)
[1] Detection accuracy of target accelerations based on vortex electromagnetic wave in keyhole space
Kai Guo(郭凯), Shuang Lei(雷爽), Yi Lei(雷艺), Hong-Ping Zhou(周红平), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2024, 33(2): 020603.
[2] Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients
Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(12): 120401.
[3] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[4] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[5] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[6] Parallel propagating modes and anomalous spatial damping in the ultra-relativistic electron plasma with arbitrary degeneracy
H Farooq, M Sarfraz, Z Iqbal, G Abbas, H A Shah. Chin. Phys. B, 2017, 26(11): 110301.
[7] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[8] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[9] Band structures of elastic waves in two-dimensional eight-fold solid-solid quasi-periodic phononic crystals
Chen A-Li (陈阿丽), Liang Tong-Li (梁同利), Wang Yue-Sheng (汪越胜). Chin. Phys. B, 2015, 24(6): 066101.
[10] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[11] Propagation characteristics of power line harmonic radiation in the ionosphere
Wu Jing (吴静), Fu Jing-Jing (付静静), Zhang Chong (张翀). Chin. Phys. B, 2014, 23(3): 034102.
[12] Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation
Wang Xin (王鑫), Chen Yong (陈勇), Dong Zhong-Zhou (董仲周). Chin. Phys. B, 2014, 23(1): 010201.
[13] Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations
Huang Lang-Yang (黄浪扬), Jiao Yan-Dong (焦艳东), Liang De-Min (梁德民). Chin. Phys. B, 2013, 22(7): 070201.
[14] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu (王云虎), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(5): 050509.
[15] Prediction and experimental measurement of electromagnetic thrust generated by a microwave thruster system
Yang Juan (杨涓), Wang Yu-Quan (王与权), Ma Yan-Jie (马艳杰), Li Peng-Fei (李鹏飞), Yang Le (杨乐), Wang Yang (王阳), He Guo-Qiang (何国强). Chin. Phys. B, 2013, 22(5): 050301.
No Suggested Reading articles found!