Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 114601    DOI: 10.1088/1674-1056/ad7727
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Relationship between self-propelled velocity and Brownian motion for spherical and ellipsoid particles

Jingwen Wang(汪静文), Ming Xu(徐明), and Deming Nie(聂德明)†
College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
Abstract  The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles derived by Perrin. The Péclet number (Pe) was introduced to measure the relative strengths of self-propelled and Brownian motions. We found that the motion state of spherical and ellipsoid self-propelled particles changed significantly under the influence of Brownian motion. For spherical particles, there were three primary states of motion: 1) when $Pe< 30$, the particles were still significantly affected by Brownian motion; 2) when $Pe> 30$, the self-propelled velocities of the particles were increasing; and 3) when $Pe> 100$, the particles were completely controlled by the self-propelled velocities and the Brownian motion was suppressed. In the simulation of the ellipsoidal self-propelled particles, we found that the larger the aspect ratio of the particles, the more susceptible they were to the influence of Brownian motion. In addition, the value interval of $Pe$ depended on the aspect ratio. Finally, we found that the directional motion ability of the ellipsoidal self-propelled particles was much weaker than that of the spherical self-propelled particles.
Keywords:  Brown motion      self-propelled particle      orientation movement  
Received:  18 July 2024      Revised:  26 August 2024      Accepted manuscript online:  04 September 2024
PACS:  46.65.+g (Random phenomena and media)  
  05.40.Jc (Brownian motion)  
  47.27.ek (Direct numerical simulations)  
  05.10.Gg (Stochastic analysis methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12372251 and 12132015) and the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. 2023YW69).
Corresponding Authors:  Deming Nie     E-mail:  nieinhz@cjlu.edu.cn

Cite this article: 

Jingwen Wang(汪静文), Ming Xu(徐明), and Deming Nie(聂德明) Relationship between self-propelled velocity and Brownian motion for spherical and ellipsoid particles 2024 Chin. Phys. B 33 114601

[1] Mörters P and Peres Y 2010 Brownian motion (1nd Edn.) (Redmond: Cambridge University Press) p. 416
[2] Genthon A 2020 Eur. Phys. J. H 45 49
[3] Sonechkin D M 1998 Int. J. Bifurcat. Chaos 8 799
[4] Cai C H, Hu J Q and Wang Y L 2021 Fractal. Fractional 5 226
[5] Nie D and Lin J 2009 Particuology 7 501
[6] Haq F, Khan M I, Khan S U, Abualnaja K M and El-Shorbagy M A 2022 Chin. Phys. B 31 084703
[7] Shiftan Y, Button K and Nijkamp P 2007 Transportation planning (1nd Edn.) (Cheltenham: Edward Elgar Publishing) p. 672
[8] Dufera T T 2024 N. Am. J. Econ. Financ 69 102017
[9] Kang M A, Fang J, Paragodaarachchi A Kodama K, Yakobashvili D, Ichiyanagi Y and Matsui H 2022 Nano Lett. 22 8852
[10] Svetlov A S, Vasiliev M M, Kononov E A, Petrov O F and Trukhachev F M 2023 Molecules 28 1790
[11] Svetlov A S, Kononov E A, Trukhachev F M, Vasiliev M M and Petrov O F 2023 J. Exp. Theo. Phys. 137 615
[12] Villa S, Blanc C, Daddi-Moussa-Ider A, Stocco A and Nobili Maurizio 2023 J. Colloid. Interface. Sci. 629 917
[13] Permpatdechakul T, Khajornrungruang P, Suzuki K, Blattler A and Inthiam J 2024 Int. J. Auto. Tech. Jpn. 18 47
[14] Wang W, Metzler R and Cherstvy A G 2022 Phys. Chem. Chem. Phys. 24 18482
[15] Boltnev R E, Vasiliev M M and Petrov O F 2023 Sci. Rep. 13 22538
[16] Li Z K and Li D X 2023 Chin. Phys. B 32 010203
[17] Hazarika S and Ahmed S 2022 Math. Comput. Simulat. 192 452
[18] Kalpana G, Madhura K R and Kudenatti R B 2022 Int. J. Eng. Sci. 32 101075
[19] Nie D and Lin J 2022 J. Chem. Phys. 157 084102
[20] Xia Y Q, Feng G Q and Shen Z L 2022 Chin. Phys. B 31 040204
[21] Zembrzycki K, Pawłowska S, Pierini F and Kowalewski T A 2023 Polymers-basel 15 787
[22] Brady J F and Bossis G 1988 Annu. Rev. Fluid. Mech 20 111
[23] Ermak D L and McCammon J A 1978 J. Chem. Phys. 69 1352
[24] Langevin P 1908 C R Hebd Seances Acad. Sci. (Paris) 146 530 (in French)
[25] Saleem S, Animasaun I L, Yook S J, Al-Mdallal Q M, Shah N A and Faisal M 2022 Surf. Interfaces 30 101854
[26] Tawade J V, Guled C N, Noeiaghdam S, Fernandez-Gamiz U, Govindan V and Balamuralitharan S 2022 Results in Engineering 15 100448
[27] Jalili P, Narimisa H, Jalili B, Shateri A and Ganji D D 2023 Soft. Comput 27 677
[28] Samantaray S S, Misra A, Shaw S, Nayak M K, Nazari S, Boukhris I and Chamkha A J 2024 Results in Engineering 22 101980
[29] Santra I, Basu U and Sabhapandit S 2021 Phys. Rev. E 104 L012601
[30] Zhu W J and Ai B Q 2022 Chin. Phys. B 31 040503
[31] Alguacil F J and Alonso M 2024 J. Aerosol. Sci. 179 106382
[32] Fukuda H, Kuramochi H, Shibuta Y and Ichiki T 2023 APL Mach. Learn. 1 046104
[33] Iyaniwura S A and Peng Z 2024 SIAM J. Appl. Math. 84 1079
[34] Ge-JiLe H, Shah N A, Mahrous Y M, Sharma P, Raju C S K and Upddhya S M 2021 Case Stud. Therm. Eng. 25 100915
[35] Khan A, Ali I, Almusawa M Y, Gul T and Alghamdi W 2023 Chin. Phys. B 32 084401
[36] Gao T F, Zheng Z G and Chen J C 2013 Chin. Phys. B 22 080502
[37] Tapia-Ignacio C, Moctezuma R E, Donado F and Weeks E R 2020 Phys. Rev. E 102 022902
[38] Cai R, Xiao H, Christov I C and Zhao Y 2021 Aiche. J. 67 e17109
[39] Li H H, Zheng Z Y and Wang Y R 2019 Chin. Phys. Lett. 36 034701
[40] Mandal S and Anirban G 2023 arxiv:2308.03451 [cond-mat.soft]
[41] Zheng Z and Han Y 2010 J. Chem. Phys. 133 124509
[42] Peng Y, Lai L, Tai Y S, Zhang K, Xu X and Cheng X 2016 Phys. Rev. Lett. 116 068303
[43] Han Y, Alsayed A, Nobili M and Yodh A G 2009 arxiv:0903.1332 [cond-mat.soft]
[44] Li H H, Zheng Z Y and Wang Y R 2019 Chin. Phys. Lett. 36 034701
[45] Perrin F 1934 Phys. Radium 5 497 (in French)
[46] Perrin F 1936 J. Phys. Radium 7 1 (in French)
[47] Oberbeck A 1876 J. Reine. Angew. Math. 81 62 (in German)
[48] Edwardes D 1893 Quart. J. Pure. Appl. Math. 26 270
[49] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[50] Wang L, Lu Y and An L 2017 Chin. J. Appl. Chem. 34 1250 (in Chinese)
[1] Passive particles driven by self-propelled particle: The wake effect
Kai-Xuan Zheng(郑凯选), Jing-Wen Wang(汪静文), Shi-Feng Wang(王世锋), and De-Ming Nie(聂德明). Chin. Phys. B, 2024, 33(4): 044501.
[2] Capture behavior of self-propelled particles into a hexatic ordering obstacle
Jing-Yi Li(李静怡), Jin-Lei Shi(石金蕾), Ying-Ying Wang(王英英), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2024, 33(12): 124501.
[3] Rectified transport of a single vibration-driven vehicle in the asymmetric channel
Yu-Wen Hao(郝钰文), Bao-Quan Ai(艾保全), Fei Tan(谭飞), Xiao-Yuan Yu(余孝源), and Feng-Guo Li(李丰果). Chin. Phys. B, 2023, 32(11): 110203.
[4] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[5] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[6] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[7] Anomalous boundary deformation induced by enclosed active particles
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康). Chin. Phys. B, 2017, 26(10): 100502.
[8] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
No Suggested Reading articles found!