Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010201    DOI: 10.1088/1674-1056/23/1/010201
GENERAL Prev   Next  

Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation

Wang Xin (王鑫)a, Chen Yong (陈勇)a, Dong Zhong-Zhoub
a Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China;
b School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454003, China
Abstract  In this paper, by using the classical Lie symmetry approach, Lie point symmetries and reductions of one Blaszak–Marciniak (BM) four-field lattice equation are obtained. Two kinds of exact solutions of a rational form and an exponential form are given. Moreover, we show that the equation has a sequence of generalized symmetries and conservation laws of polynomial form, which further confirms the integrability of the BM system.
Keywords:  Blaszak–      Marciniak four-field lattice      symmetries      explicit solution      conservation laws  
Received:  21 January 2013      Revised:  31 May 2013      Accepted manuscript online: 
PACS:  02.20.Hj (Classical groups)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075055 and 11275072), the Innovative Research Team Program of the National Science Foundation of China (Grant No. 61021104), the National High Technology Research and Development Program of China (Grant No. 2011AA010101), the Shanghai Knowledge Service Platform for Trustworthy Internet of Things, China (Grant No. ZF1213), the Doctor Foundation of Henan Polytechnic University, China (Grant No. B2011-006), the Youth Foundation of Henan Polytechnic University, China (Grant No. Q2012-30A), and the Science and Technology Research Key Project of Education Department of Henan Province, China (Grant No. 13A110329).
Corresponding Authors:  Chen Yong     E-mail:  ychen@sei.ecnu.edu.cn

Cite this article: 

Wang Xin (王鑫), Chen Yong (陈勇), Dong Zhong-Zhou (董仲周) Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation 2014 Chin. Phys. B 23 010201

[1] Toda M 1967 J. Phys. Soc. Jpn. 22 431
[2] Hirota R 1977 J. Phys. Soc. Jpn. 43 2079
[3] Flaschka H 1974 Prog. Theor. Phys. 51 703
[4] Blaszak M and Marciniak K 1994 J. Math. Phys. 35 4661
[5] Belov A and Chaltikian K 1993 Phys. Lett. B 309 268
[6] Xue B and Wang X 2012 Chin. Phys. Lett. 29 100201
[7] Yang P, Chen Y and Li Z B 2009 Appl. Math. Comput. 210 362
[8] Wu Y T and Geng X G 1999 Phys. Soc. Jpn. 68 784
[9] Geng X G and Dai H H 2006 J. Phys. Soc. Jpn. 75 3002
[10] Wu Y T and Geng X G 1996 J. Math. Phys. 37 2338
[11] Luo L and Fan E G 2007 Phys. Lett. A 370 234
[12] Luo L and Fan E G 2007 Chin. Phys. Lett. 24 1444
[13] Sahadevan R and Khousalya S 2001 J. Math. Phys. 42 3854
[14] Sahadevan R and Khousalya S 2008 J. Math. Phys. 49 113510
[15] Hereman W, Sanders J, Sayers J and Wang J P 2005 CRM Proceedings and Lecture Series 39 133
[16] Göktas Ü and Hereman W 1999 Adv. Comput. Math. 11 55
[17] Lou S Y and Ma H C 2005 J. Phys. A: Math. Gen. 38 L129
[18] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[19] Li J H and Lou S Y 2008 Chin. Phys. B 17 747
[20] Wang Y F, Lou S Y and Qian X M 2010 Chin. Phys. B 19 050202
[21] Dong Z Z and Chen Y 2010 Commun. Theor. Phys. 54 389
[22] Yao R X, Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 1821
[23] Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 3611
[24] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[25] Dong Z Z, Chen Y and Lang H Y 2010 Chin. Phys. B 19 090205
[26] Zhu Z N, Wu X N, Xue W M and Zhu Z M 2002 Phys. Lett. A 296 280
[27] Zhu Z N, Wu X N, Xue W M and Ding Q 2002 Phys. Lett. A 297 387
[28] Lou Z M 2010 Acta Phys. Sin. 59 6764 (in Chinese)
[29] Jiao X Y 2011 Acta Phys. Sin. 12 120201 (in Chinese)
[30] Zhang H P, Chen Y and Li B 2009 Acta Phys. Sin. 58 7393 (in Chinese)
[31] Fang J H and Zhao S Q 2001 Acta Phys. Sin. 50 390 (in Chinese)
[32] Wang J and Li B 2009 Chin. Phys. B 18 2109
[33] Xue B and Wu C M 2012 Commun. Theor. Phys. 58 317
[34] Liu P and Lou S Y 2010 Chin. Phys. Lett. 27 020202
[35] Wang Z Y and Chen A H 2007 Chin. Phys. 16 1233
[36] Li J H and Lou S Y 2008 Chin. Phys. B 17 747
[37] Zhao H Q and Zhu Z N 2010 AIP Conf. Proc. 1212 162
[1] Space symmetry of effective physical constants for biaxial crystals
Fuan Liu(刘孚安), Zeliang Gao(高泽亮), XinYin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2021, 30(2): 026104.
[2] Theory of unconventional superconductivity in nickelate-based materials
Ming Zhang(张铭), Yu Zhang(张渝), Huaiming Guo(郭怀明), and Fan Yang(杨帆). Chin. Phys. B, 2021, 30(10): 108204.
[3] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[4] Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene
Ming Zhang(张铭), Yu Zhang(张渝), Chen Lu(卢晨), Wei-Qiang Chen(陈伟强), and Fan Yang(杨帆). Chin. Phys. B, 2020, 29(12): 127102.
[5] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[6] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[7] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[8] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[9] Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system
Liu Ping (刘萍), Zeng Bao-Qing (曾葆青), Yang Jian-Rong (杨建荣), Ren Bo (任博). Chin. Phys. B, 2015, 24(1): 010202.
[10] Exact solution of Dirac equation for Scarf potential with new tensor coupling potential for spin and pseudospin symmetries using Romanovski polynomials
A. Suparmi, C. Cari, U. A. Deta. Chin. Phys. B, 2014, 23(9): 090304.
[11] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[12] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[13] Relativistic symmetries of Deng–Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions
Akpan N. Ikot, S. Zarrinkamar, B. H. Yazarloo, H. Hassanabadi. Chin. Phys. B, 2014, 23(10): 100306.
[14] Nonlocal symmetry, optimal systems, and explicit solutions of the mKdV equation
Xin Xiang-Peng (辛祥鹏), Miao Qian (苗倩), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(1): 010203.
[15] Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations
Huang Lang-Yang (黄浪扬), Jiao Yan-Dong (焦艳东), Liang De-Min (梁德民). Chin. Phys. B, 2013, 22(7): 070201.
No Suggested Reading articles found!