|
|
Role of self-assembled molecules' anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells |
Xiaoyu Wang(王啸宇)1,†, Muhammad Faizan2,†, Kun Zhou(周琨)2, Xinjiang Wang(王新江)2,‡, Yuhao Fu(付钰豪)1,§, and Lijun Zhang(张立军)2,¶ |
1 Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China |
|
|
Abstract Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication, low hysteresis effects, and high stability. Despite these advantages, their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface, particularly at the buried interface between the perovskite and transparent conductive oxide (TCO). Recent efforts in the perovskite community have focused on designing novel self-assembled molecules (SAMs) to improve the quality of the buried interface. However, a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces. This understanding is crucial, particularly in terms of identifying chemically active anchoring groups. In this study, we used the star SAM ([2-(9H-carbazol-9-yl)ethyl] phosphonic acid) as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface. Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages. These groups fulfill three key criteria: they provide the greatest potential for defect passivation, exhibit stable adsorption with defects, and exert significant regulatory effects on interface dipoles. Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties, which effectively neutralize local charges near defects. Among various defect types, iodine vacancies are the easiest to passivate, whereas iodine-substituted lead defects are the most challenging to passivate. Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs, contributing to the ongoing development of more efficient inverted perovskite solar cells.
|
Received: 28 July 2024
Revised: 19 August 2024
Accepted manuscript online: 20 August 2024
|
PACS:
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
81.65.Rv
|
(Passivation)
|
|
68.43.Bc
|
(Ab initio calculations of adsorbate structure and reactions)
|
|
31.30.jp
|
(Electron electric dipole moment)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62321166653, 22090044, and 12350410372). |
Corresponding Authors:
Xinjiang Wang, Yuhao Fu, Lijun Zhang
E-mail: xinjiang_wang@jlu.edu.cn;fuyuhaoy@gmail.com;lijun_zhang@jlu.edu.cn
|
Cite this article:
Xiaoyu Wang(王啸宇), Muhammad Faizan, Kun Zhou(周琨), Xinjiang Wang(王新江), Yuhao Fu(付钰豪), and Lijun Zhang(张立军) Role of self-assembled molecules' anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells 2024 Chin. Phys. B 33 107303
|
[1] Yao Y, Cheng C, Zhang C, Hu H, Wang K and De Wolf S 2022 Advanced Materials 34 2203794 [2] Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q, Bati A S R, Wan H, Wang Z, Zeng L, Wang J, Serles P, Liu Y, Teale S, Liu Y, Saidaminov M I, Li M, Rolston N, Hoogland S, Filleter T, Kanatzidis M G, Chen B, Ning Z and Sargent E H 2024 Science 384 189 [3] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J and Zhu R 2018 Science 360 1442 [4] Meng L, You J, Guo T F and Yang Y 2016 Acc. Chem. Res. 49 155 [5] Li M, Liu M, Qi F, Lin F R and Jen A K Y 2024 Chem. Rev. 124 2138 [6] Zhang S, Ye F, Wang X, Chen R, Zhang H, Zhan L, Jiang X, Li Y, Ji X, Liu S, Yu M, Yu F, Zhang Y, Wu R, Liu Z, Ning Z, Neher D, Han L, Lin Y, Tian H, Chen W, Stolterfoht M, Zhang L, Zhu W H and Wu Y 2023 Science 380 404 [7] Wang G, Chen K, Cheng L, Wang D, Meng F and Xiang W 2024 Solar RRL 8 2300996 [8] Rombach F M, Haque S A and Macdonald T J 2021 Energy Environ. Sci. 14 5161 [9] Park H, Chaurasiya R, Jeong B H, Sakthivel P and Park H J 2021 Advanced Photonics Research 2 2000178 [10] Magomedov A, Al-Ashouri A, Kasparavičius E, Strazdaite S, Niaura G, Jošt M, Malinauskas T, Albrecht S and Getautis V 2018 Adv. Energy Mater. 8 1801892 [11] Al-Ashouri A, Magomedov A, Roß M, Jošt M, Talaikis M, Chistiakova G, Bertram T, Márquez J A, Köhnen E, Kasparavicius E, Levcenco S, Gil-Escrig L, Hages C J, Schlatmann R, Rech B, Malinauskas T, Unold T, Kaufmann C A, Korte L, Niaura G, Getautis V and Albrecht S 2019 Energy Environ. Sci. 12 3356 [12] Yalcin E, Can M, Rodriguez-Seco C, Aktas E, Pudi R, Cambarau W, Demic S and Palomares E 2019 Energy Environ. Sci. 12 230 [13] Wang S, Guo H and Wu Y 2023 Mater. Futures 2 012105 [14] Reig M, Bagdziunas G, Volyniuk D, Grazulevicius J V and Velasco D 2017 Phys. Chem. Chem. Phys. 19 6721 [15] Yi Z, Li X, Xiong Y, Shen G, Zhang W, Huang Y, Jiang Q, Ng X R, Luo Y, Zheng J, Leong W L, Fu F, Bu T and Yang J 2024 Interdisciplinary Materials 3 203 [16] Park S M, Wei M, Xu J, Atapattu H R, Eickemeyer F T, Darabi K, Grater L, Yang Y, Liu C, Teale S, Chen B, Chen H, Wang T, Zeng L, Maxwell A, Wang Z, Rao K R, Cai Z, Zakeeruddin S M, Pham J T, Risko C M, Amassian A, Kanatzidis M G, Graham K R, Grätzel M and Sargent E H 2023 Science 381 209 [17] Li G, Su Z, Canil L, Hughes D, Aldamasy M H, Dagar J, Trofimov S, Wang L, Zuo W, Jerónimo-Rendon J J, Byranvand M M, Wang C, Zhu R, Zhang Z, Yang F, Nasti G, Naydenov B, Tsoi W C, Li Z, Gao X, Wang Z, Jia Y, Unger E, Saliba M, Li M and Abate A 2023 Science 379 399 [18] Li L, Wang Y, Wang X, Lin R, Luo X, Liu Z, Zhou K, Xiong S, Bao Q, Chen G, Tian Y, Deng Y, Xiao K, Wu J, Saidaminov M I, Lin H, Ma C Q, Zhao Z, Wu Y, Zhang L and Tan H 2022 Nat. Energy 7 708 [19] Park S M, Wei M, Lempesis N, Yu W, Hossain T, Agosta L, Carnevali V, Atapattu H R, Serles P, Eickemeyer F T, Shin H, Vafaie M, Choi D, Darabi K, Jung E D, Yang Y, Kim D B, Zakeeruddin S M, Chen B, Amassian A, Filleter T, Kanatzidis M G, Graham K R, Xiao L, Rothlisberger U, Grätzel M and Sargent E H 2023 Nature 624 289 [20] Li Z, Sun X, Zheng X, Li B, Gao D, Zhang S, Wu X, Li S, Gong J, Luther J M, Li Z and Zhu Z 2023 Science 382 284 [21] Aydin E, Ugur E, Yildirim B K, Allen T G, Dally P, Razzaq A, Cao F, Xu L, Vishal B, Yazmaciyan A, Said A A, Zhumagali S, Azmi R, Babics M, Fell A, Xiao C and De Wolf S 2023 Nature 623 732 [22] Wang G, Zheng J, Duan W, Yang J, Mahmud M A, Lian Q, Tang S, Liao C, Bing J, Yi J, Leung T L, Cui X, Chen H, Jiang F, Huang Y, Lambertz A, Jankovec M, Topič M, Bremner S, Zhang Y Z, Cheng C, Ding K and Ho-Baillie A 2023 Joule 7 2583 [23] Li M, Gao H, Yu L, Tang S, Peng Y, Zheng C, Xu L, Tao Y, Chen R and Huang W 2021 Small 17 2102090 [24] Abbas M, Cai B, Hu J, Guo F, Mai Y and Yuan X C 2021 ACS Appl. Mater. Interfaces 13 46566 [25] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [27] Kresse G and Furthmüller J 1996 Computational Materials Science 6 15 [28] Blöchl P E 1994 Phys. Rev. B 50 17953 [29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [30] Zhao X G, Zhou K, Xing B, Zhao R, Luo S, Li T, Sun Y, Na G, Xie J, Yang X, Wang X, Wang X, He X, Lv J, Fu Y and Zhang L 2021 Science Bulletin 66 1973 [31] Luo S, Xing B, Faizan M, Xie J, Zhou K, Zhao R, Li T, Wang X, Fu Y, He X, Lv J and Zhang L 2022 J. Phys. Chem. A 126 4300 [32] Kırbıyık C, Akın Kara D, Kara K, Büyükçelebi S, Yiǧit M Z, Can M and Kuş M 2019 Applied Surface Science 479 177 [33] Wirth M J, Fairbank R W P and Fatunmbi H O 1997 Science 275 44 [34] Singh S, Abdur R, Nam H S, Kim J H, Lee S M, Lee H and Lee J 2023 Electron. Mater. Lett. 19 267 [35] Yee C, Kataby G, Ulman A, Prozorov T, White H, King A, Rafailovich M, Sokolov J and Gedanken A 1999 Langmuir 15 7111 [36] Laibinis P E, Hickman J J, Wrighton M S and Whitesides G M 1989 Science 245 845 [37] Chen Y, Li B, Zhong W, Luo D, Li G, Zhou C, Lan L and Chen R 2022 IEEE Transactions on Electron Devices 69 160 [38] Vericat C, Vela M E, Benitez G, Carro P and Salvarezza R C 2010 Chem. Soc. Rev. 39 1805 [39] Liu N and Yam C 2018 Physical Chemistry Chemical Physics 20 6800 [40] Oner S M, Sezen E, Yordanli M S, Karakoc E, Deger C and Yavuz I 2022 J. Phys. Chem. Lett. 13 324 [41] Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903 [42] Alkauskas A, Broqvist P and Pasquarello A 2011 Physica Status Solidi (b) 248 775 [43] Ismer L, Janotti A and Van de Walle C G 2011 J. Alloy. Compd. 509 S658 [44] Chen W and Pasquarello A 2015 J. Phys.: Condens. Matter 27 133202 [45] Godding J S W, Ramadan A J, Lin Y H, Schutt K, Snaith H J and Wenger B 2019 Joule 3 2716 [46] Fei C, Li N, Wang M, Wang X, Gu H, Chen B, Zhang Z, Ni Z, Jiao H, Xu W, Shi Z, Yan Y and Huang J 2023 Science 380 823 [47] Furer S O, Rietwyk K J, Pulvirenti F, McMeekin D P, Surmiak M A, Raga S R, Mao W, Lin X, Hora Y, Wang J, Shi Y, Barlow S, Ginger D S, Marder S R and Bach U 2023 ACS Appl. Energy Mater. 6 667 [48] Guo H, Liu C, Hu H, Zhang S, Ji X, Cao X M, Ning Z, Zhu W H, Tian H and Wu Y 2023 National Science Review 10 nwad057 [49] Shi Y, Zhang H, Tong X, Hou X, Li F, Du Y, Wang S, Zhang Q, Liu P and Zhao X 2021 Solar RRL 5 2100128 [50] Dai Z, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y and Padture N P 2021 Science 372 618 [51] Lu H, Zhuang J, Ma Z, Deng Y, Wang Q, Guo Z, Zhao S and Li H 2019 Materials Science in Semiconductor Processing 97 21 [52] Kırbıyık C, Can M and Kuş M 2020 Materials Science in Semiconductor Processing 107 104860 [53] Xu J, Chen H, Grater L, Liu C, Yang Y, Teale S, Maxwell A, Mahesh S, Wan H, Chang Y, Chen B, Rehl B, Park S M, Kanatzidis M G and Sargent E H 2023 Nat. Mater. 22 1507 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|