Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070501    DOI: 10.1088/1674-1056/ad3dc6
GENERAL Prev   Next  

A wealth distribution model with a non-Maxwellian collision kernel

Jun Meng(孟俊)1, Xia Zhou(周霞)2,†, and Shaoyong Lai(赖绍永)3
1 College of Mathematics and Statistics, Kashi University, Kashi 844006, China;
2 College of Mathematics and Physics, Mianyang Teacher's College, Mianyang 621000, China;
3 School of Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China
Abstract  A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society. The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker-Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index.
Keywords:  kinetic theory      non-Maxwellian collision kernel      wealth distribution      Pareto index  
Received:  21 November 2023      Revised:  19 March 2024      Accepted manuscript online:  12 April 2024
PACS:  05.20.Dd (Kinetic theory)  
  89.65.Gh (Economics; econophysics, financial markets, business and management)  
  47.45.Ab (Kinetic theory of gases)  
  05.10.Gg (Stochastic analysis methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11471263), the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2021D01B09), the Initial Research Foundation of Kashi University (Grant No. 022024076), and “Mathematics and Finance Research Centre Funding Project”, Dazhou Social Science Federation (Grant No. SCMF202305).
Corresponding Authors:  Xia Zhou     E-mail:  xiazhou2017@163.com

Cite this article: 

Jun Meng(孟俊), Xia Zhou(周霞), and Shaoyong Lai(赖绍永) A wealth distribution model with a non-Maxwellian collision kernel 2024 Chin. Phys. B 33 070501

[1] Pareto V 1897 Cours d’economie politique (Lausanne: Macmillan)
[2] Pareschi L and Toscani G 2013 Interacting multiagent systems. Kinetic equations & Monte Carlo methods (Oxford: Oxford University Press)
[3] Cordier S, Pareschi L and Toscani G 2005 J. Stat. Phys. 120 253
[4] Bisi M, Spiga G and Toscani G 2009 Commun. Math. Sci. 7 901
[5] Pareschi L and Toscani G 2014 Phil. Trans. R Soc. A 372 1
[6] Düring B and Toscani G 2008 Commun. Math. Sci. 6 1043
[7] Bisi M 2017 Boll Unione Mat. Ital. 10 143
[8] Dimarco G, Pareschi L, Toscani G and Zanella M 2020 Phys Rev. E 102 022303
[9] Düring B, Pareschi L and Toscani G 2018 Eur. Phys. J. B 91 265
[10] Bisi M 2022 Phil. Trans. R. Soc. A 380 20210156
[11] Furioli G, Pulvirenti A, Terraneo E and Toscani G 2020 Math. Mod. Meth. Appl. Sci. 30 685
[12] Del-Mul E M 2021 Kinetic description of a market economy (MA. Eng Dissertation) (MiLano: Scuola di ingegneria industriale e dell’informazione) (in Italia)
[13] Ballante E, Bardelli C, Zanella M, Figini S and Toscani G 2020 Symmetry 12 1390
[14] Gupta K 2006 Physica A 35 634
[15] Cercignani C 1998 The Boltzmann equation and its applications (New York: Springer-Verlag)
[16] Kashdan E and Pareschi L 2012 Math. Biosci. 240 223
[17] Hu C H and Cheng H J 2023 Chin. Phys. B 32 088901
[18] Bisi M and Spiga G 2010 Kinet. Relat. Models 3 233
[19] Furioli G, Pulvirenti A, Terraneo E and Toscani G 2017 Math. Mod. Meth. Appl. Sci. 27 115
[20] Suleiman K, Zhang X L, Liu S N and Zheng L C 2022 Chin. Phys. B 31 110202
[21] Guo Y F and Tan J G 2012 Chin. Phys. B 21 120501
[22] Mankiw N G, Weinzierl M and Yagan D 2009 J. Econ. Perspect. 23 147
[1] A kinetic description of the impact of agent competence and psychological factors on investment decision-making
Chunhua Hu(胡春华) and Hongjing Chen(陈弘婧). Chin. Phys. B, 2023, 32(8): 088901.
[2] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[3] RF electric field penetration and power deposition into nonequilibrium planar-type inductively coupled plasmas
Mao Ming(毛明), Wang Shuai(王帅), Dai Zhong-Ling(戴忠玲), and Wang You-Nian(王友年). Chin. Phys. B, 2007, 16(7): 2044-2050.
[4] Thermal conductivity of dielectric nanowires with different cross-section shapes
Gu Xiao-Kun(顾骁坤) and Cao Bing-Yang(曹炳阳). Chin. Phys. B, 2007, 16(12): 3777-3782.
No Suggested Reading articles found!