Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 094201    DOI: 10.1088/1674-1056/ad5980
Special Issue: Featured Column — INSTRUMENTATION AND MEASUREMENT
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Frequency-modulated continuous-wave multiplexed gas sensing based on optical frequency comb calibration

Linhua Jia(贾琳华), Xinghua Qu(曲兴华), and Fumin Zhang (张福民)†
State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
Abstract  Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important role in the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system based on optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. The system can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed optical path. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequency division multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneously achieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used as the frequency calibration source, which guarantees the measurement accuracy. The test samples involve H$^{13}$C$^{14}$N, C$_{2}$H$_{2}$ and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that the measurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 μm, respectively. The scheme offers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize the identification of multi-gas components and the high-precision inversion of absorption lines under different environments. The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gas sensing applications.
Keywords:  frequency-modulated continuous-wave (FMCW) technology      optical frequency comb      multiplexing      absorption spectroscopy  
Received:  17 May 2024      Revised:  06 June 2024      Accepted manuscript online:  19 June 2024
PACS:  42.15.Eq (Optical system design)  
  06.20.-f (Metrology)  
  42.62.Fi (Laser spectroscopy)  
  42.62.-b (Laser applications)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52375546) and the National Key Research and Development Program of China (Grant No. 2022YFF0705701).
Corresponding Authors:  Fumin Zhang     E-mail:  zhangfumin@tju.edu.cn

Cite this article: 

Linhua Jia(贾琳华), Xinghua Qu(曲兴华), and Fumin Zhang (张福民) Frequency-modulated continuous-wave multiplexed gas sensing based on optical frequency comb calibration 2024 Chin. Phys. B 33 094201

[1] Herman D I, Weerasekara C, Hutcherson L C, Giorgetta F R, Cossel K C, Waxman E M, Colacion G M, Newbury N R, Welch S M, DePaola B D, Coddington I, Santos E A and Washburn B R 2021 Sci. Adv. 7 9765
[2] Rieker G B, Giorgetta F R, Swann W C, Kofler J, Zolot A M, Sinclair L C, Baumann E, Cromer C, Petron G, Sweeney C, Tans P P, Coddington I and Newbury N R 2014 Optica 1 290
[3] Farooq A, Alquaity A B S, Raza M, Nasir E F, Yao S C and Ren W 2022 Prog. Energ. Combust. 91 100997
[4] Li A, Yao C H, Xia J F, Wang H J, Cheng Q X, Penty R, Fainman Y and Pan S L 2022 Light-Sci. Appl. 11 174
[5] Zhao R, Zhou B, Zhang J Y, Cheng R X, Liu Q, Dai M L, Wang B B and Wang Y H 2023 Exp. Therm. Fluid Sci. 147 110930
[6] Yang Z Y, Albrow-Owen T, Cai W W and Hasan T 2021 Science 371 eabe0722
[7] Yun D V, Cole R K, Malarich N A, Coburn S C, Hoghooghi N, Liu J W, France J J, Hagenmaier M A, Rice K M, Donbar J M and Rieker G B 2022 Optica 9 15
[8] Coburn S, Alden C B, Wright R, Cossel K, Baumann E, Truong G W, Giorgetta F, Sweeney C, Newbury N R, Prasad K, Coddington I and Rieker G B 2018 Optica 5 320
[9] Lu P, Lalam N, Badar M, Liu B, Chorpening B T, Buric M P and Ohodnicki P R 2019 Appl. Phys. Rev. 6 041302
[10] Huang X L, Li N, Weng C S and Kang Y 2022 Chin. Phys. B 31 014703
[11] Nie W, Xu Z Y, Kan R F, Dong M R and Lu J D 2021 Chin. Phys. B 30 064213
[12] Wang Q J, Sun P S, Zhang Z R, Zhang L W, Yang X, Wu B, Pang T, Xia H and Li Q Y 2021 Acta. Phys. Sin 70 144203 (in Chinese)
[13] Zhang W P, Chen X Y, Wu X J, Li Y and Wei H Y 2019 Photonics Res. 7 883
[14] Peng D W, Gu C L, Zuo Z, Di Y F, Zou X, Tang L L, Deng L H, Luo D P, Liu Y and Li W X 2023 Nat. Commun. 14 883
[15] Di Rosa M D, Reiten M T, Mertes K M and Clegg S M 2021 Opt. Express 29 26456
[16] Yuan Z Y, Lou X T and Dong Y K 2021 J. Lightwave Technol 39 4847
[17] Yuan Z Y, Lou X T, Chu Q, Li T F and Dong Y K 2022 Appl. Phys. B 128 66
[18] Wang C, Langrock C, Marandi A, Jankowski M, Zhang M, Desiatov B, Fejer M M and Loncar M 2018 Optica 5 1438
[19] Jankowski M, Langrock C, Desiatov B, Marandi A, Wang C, Zhang M, Phillips C R, Loncar M and Fejer M M 2020 Optica 7 40
[20] Konishi T, Iiyama K and Yoshii Y 2021 Opt. Commun. 498 127208
[21] Lou X T, Feng Y B, Chen C and Dong Y K 2020 Opt. Express 28 9014
[22] Diddams S A, Vahala K and Udem T 2020 Science 369 eaay3676
[23] Hashimoto K, Nakamura T, Kageyama T, Badarla V R, Shimada H, Horisaki R and Ideguchi T 2023 Light-Sci. Appl. 12 48
[24] Liu C H, Jin H S, Liu H and Bai J T 2022 Chin. Phys. B 31 084205
[25] Cao S Y, Han Y, Ding Y J, Lin B K and Fang Z J 2022 Chin. Phys. B 31 074207
[26] Zhang P, Zhang Y Y, Li M K, Rao B J, Yan L L, Chen F X, Zhang X F, Chen Q F, Jiang H F and Zhang S G 2022 Chin. Phys. B 31 054210
[27] Scholkmann F, Kleiser S, Metz A J, Zimmermann R, Pavia J M, Wolf U and Wolf M 2014 Neuroimage 85 6
[28] Jia L H, Wang Y, Wang X Y, Zhang F M, Wang W Q, Wang J D, Zheng J H, Chen J W, Song M Y, Ma X, Yuan M Y, Little B, Chu S T, Cheng D, Qu X H, Zhao W and Zhang W F 2021 Opt. Lett. 46 1025
[29] Lou X T, Feng Y B, Yang S H and Dong Y K 2021 Photonics Res. 9 193
[30] Zavrsnik M and Stewart G 2000 J. Lightwave Technol. 18 57
[31] Jiang Y S, Karpf S and Jalali B 2020 Nat. Photonics 14 14
[32] Riemensberger J, Lukashchuk A, Karpov M, Weng W L, Lucas E, Liu J Q and Kippenberg T J 2020 Nature 581 164
[33] Liu Y, Xia W Z, He M Z, Cao S Y, Miao D J, Lin B K, Xie J D, Yang W L and Li J S 2022 Opt. Laser Eng. 151 106900
[34] National Institute of Standards and Technology https://www.nist.gov/srd
[35] Li J S, Deng H, Li P F and Yu B L 2015 Appl. Phys. B 120 207
[36] Jia L H, Jin B, Zheng J H, Zhang F M and Qu X H 2024 J. Lightwave Technol. 42 1710
[37] Niu Q, Zheng J H, Cheng X R, Liu J C, Jia L H, Ni L M, Nian J, Zhang F M and Qu X H 2022 Opt. Express 30 35029
[38] Steck D A 2023 Rubidium 85 D Line Data (revision 2.3.2) (Eugene: University of Oregon) pp. 25-27
[1] Bessel—Gaussian beam-based orbital angular momentum holography
Jiaying Ji(季佳滢), Zhigang Zheng(郑志刚), Jialong Zhu(朱家龙), Le Wang(王乐), Xinguang Wang(王新光), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(1): 014204.
[2] Core-level spectroscopy of the photodissociation process of BrCN molecule
Kun Zhou(周坤) and Han Wang(王涵). Chin. Phys. B, 2024, 33(1): 018702.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[5] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[6] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[7] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[8] Reconstruction resolution enhancement of EPISM based holographic stereogram with hogel spatial multiplexing
Yunpeng Liu(刘云鹏), Teng Zhang(张腾), Jian Su(苏健), Tao Jing(荆涛), Min Lin(蔺敏), Pei Li(李沛), and Xingpeng Yan(闫兴鹏). Chin. Phys. B, 2022, 31(4): 044201.
[9] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[10] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[11] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[12] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[13] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[14] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[15] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
No Suggested Reading articles found!