Special Issue:
Featured Column — INSTRUMENTATION AND MEASUREMENT
|
INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
Frequency-modulated continuous-wave multiplexed gas sensing based on optical frequency comb calibration |
Linhua Jia(贾琳华), Xinghua Qu(曲兴华), and Fumin Zhang (张福民)† |
State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China |
|
|
Abstract Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important role in the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system based on optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. The system can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed optical path. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequency division multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneously achieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used as the frequency calibration source, which guarantees the measurement accuracy. The test samples involve H$^{13}$C$^{14}$N, C$_{2}$H$_{2}$ and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that the measurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 μm, respectively. The scheme offers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize the identification of multi-gas components and the high-precision inversion of absorption lines under different environments. The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gas sensing applications.
|
Received: 17 May 2024
Revised: 06 June 2024
Accepted manuscript online: 19 June 2024
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52375546) and the National Key Research and Development Program of China (Grant No. 2022YFF0705701). |
Corresponding Authors:
Fumin Zhang
E-mail: zhangfumin@tju.edu.cn
|
Cite this article:
Linhua Jia(贾琳华), Xinghua Qu(曲兴华), and Fumin Zhang (张福民) Frequency-modulated continuous-wave multiplexed gas sensing based on optical frequency comb calibration 2024 Chin. Phys. B 33 094201
|
[1] Herman D I, Weerasekara C, Hutcherson L C, Giorgetta F R, Cossel K C, Waxman E M, Colacion G M, Newbury N R, Welch S M, DePaola B D, Coddington I, Santos E A and Washburn B R 2021 Sci. Adv. 7 9765 [2] Rieker G B, Giorgetta F R, Swann W C, Kofler J, Zolot A M, Sinclair L C, Baumann E, Cromer C, Petron G, Sweeney C, Tans P P, Coddington I and Newbury N R 2014 Optica 1 290 [3] Farooq A, Alquaity A B S, Raza M, Nasir E F, Yao S C and Ren W 2022 Prog. Energ. Combust. 91 100997 [4] Li A, Yao C H, Xia J F, Wang H J, Cheng Q X, Penty R, Fainman Y and Pan S L 2022 Light-Sci. Appl. 11 174 [5] Zhao R, Zhou B, Zhang J Y, Cheng R X, Liu Q, Dai M L, Wang B B and Wang Y H 2023 Exp. Therm. Fluid Sci. 147 110930 [6] Yang Z Y, Albrow-Owen T, Cai W W and Hasan T 2021 Science 371 eabe0722 [7] Yun D V, Cole R K, Malarich N A, Coburn S C, Hoghooghi N, Liu J W, France J J, Hagenmaier M A, Rice K M, Donbar J M and Rieker G B 2022 Optica 9 15 [8] Coburn S, Alden C B, Wright R, Cossel K, Baumann E, Truong G W, Giorgetta F, Sweeney C, Newbury N R, Prasad K, Coddington I and Rieker G B 2018 Optica 5 320 [9] Lu P, Lalam N, Badar M, Liu B, Chorpening B T, Buric M P and Ohodnicki P R 2019 Appl. Phys. Rev. 6 041302 [10] Huang X L, Li N, Weng C S and Kang Y 2022 Chin. Phys. B 31 014703 [11] Nie W, Xu Z Y, Kan R F, Dong M R and Lu J D 2021 Chin. Phys. B 30 064213 [12] Wang Q J, Sun P S, Zhang Z R, Zhang L W, Yang X, Wu B, Pang T, Xia H and Li Q Y 2021 Acta. Phys. Sin 70 144203 (in Chinese) [13] Zhang W P, Chen X Y, Wu X J, Li Y and Wei H Y 2019 Photonics Res. 7 883 [14] Peng D W, Gu C L, Zuo Z, Di Y F, Zou X, Tang L L, Deng L H, Luo D P, Liu Y and Li W X 2023 Nat. Commun. 14 883 [15] Di Rosa M D, Reiten M T, Mertes K M and Clegg S M 2021 Opt. Express 29 26456 [16] Yuan Z Y, Lou X T and Dong Y K 2021 J. Lightwave Technol 39 4847 [17] Yuan Z Y, Lou X T, Chu Q, Li T F and Dong Y K 2022 Appl. Phys. B 128 66 [18] Wang C, Langrock C, Marandi A, Jankowski M, Zhang M, Desiatov B, Fejer M M and Loncar M 2018 Optica 5 1438 [19] Jankowski M, Langrock C, Desiatov B, Marandi A, Wang C, Zhang M, Phillips C R, Loncar M and Fejer M M 2020 Optica 7 40 [20] Konishi T, Iiyama K and Yoshii Y 2021 Opt. Commun. 498 127208 [21] Lou X T, Feng Y B, Chen C and Dong Y K 2020 Opt. Express 28 9014 [22] Diddams S A, Vahala K and Udem T 2020 Science 369 eaay3676 [23] Hashimoto K, Nakamura T, Kageyama T, Badarla V R, Shimada H, Horisaki R and Ideguchi T 2023 Light-Sci. Appl. 12 48 [24] Liu C H, Jin H S, Liu H and Bai J T 2022 Chin. Phys. B 31 084205 [25] Cao S Y, Han Y, Ding Y J, Lin B K and Fang Z J 2022 Chin. Phys. B 31 074207 [26] Zhang P, Zhang Y Y, Li M K, Rao B J, Yan L L, Chen F X, Zhang X F, Chen Q F, Jiang H F and Zhang S G 2022 Chin. Phys. B 31 054210 [27] Scholkmann F, Kleiser S, Metz A J, Zimmermann R, Pavia J M, Wolf U and Wolf M 2014 Neuroimage 85 6 [28] Jia L H, Wang Y, Wang X Y, Zhang F M, Wang W Q, Wang J D, Zheng J H, Chen J W, Song M Y, Ma X, Yuan M Y, Little B, Chu S T, Cheng D, Qu X H, Zhao W and Zhang W F 2021 Opt. Lett. 46 1025 [29] Lou X T, Feng Y B, Yang S H and Dong Y K 2021 Photonics Res. 9 193 [30] Zavrsnik M and Stewart G 2000 J. Lightwave Technol. 18 57 [31] Jiang Y S, Karpf S and Jalali B 2020 Nat. Photonics 14 14 [32] Riemensberger J, Lukashchuk A, Karpov M, Weng W L, Lucas E, Liu J Q and Kippenberg T J 2020 Nature 581 164 [33] Liu Y, Xia W Z, He M Z, Cao S Y, Miao D J, Lin B K, Xie J D, Yang W L and Li J S 2022 Opt. Laser Eng. 151 106900 [34] National Institute of Standards and Technology https://www.nist.gov/srd [35] Li J S, Deng H, Li P F and Yu B L 2015 Appl. Phys. B 120 207 [36] Jia L H, Jin B, Zheng J H, Zhang F M and Qu X H 2024 J. Lightwave Technol. 42 1710 [37] Niu Q, Zheng J H, Cheng X R, Liu J C, Jia L H, Ni L M, Nian J, Zhang F M and Qu X H 2022 Opt. Express 30 35029 [38] Steck D A 2023 Rubidium 85 D Line Data (revision 2.3.2) (Eugene: University of Oregon) pp. 25-27 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|