Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 085205    DOI: 10.1088/1674-1056/ad426a
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Calculation and prediction of divertor detachment via impurity seeding by using one-dimensional model

Wen-Jie Zhou(周文杰)1,2, Xiao-Ju Liu(刘晓菊)1,†, Xiao-He Wu(邬潇河)1,2, Bang Li(李邦)1,2, Qi-Qi Shi(石奇奇)1,2, Hao-Chen Fan(樊皓尘)1,2, Yan-Jie Yang(杨艳杰)1,2, and Guo-Qiang Li(李国强)1,‡
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China
Abstract  Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates, thereby extending the lifetime of divertor components for fusion devices. In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design, a one-dimensional (1D) modeling code for the operating point of impurity seeded detached divertor is developed based on Python language, which is a fluid model based on previous work (Plasma Phys. Control. Fusion 58 045013 (2016)). The experimental observation of the onset of divertor detachment by neon (Ne) and argon (Ar) seeding in EAST is well reproduced by using the 1D modeling code. The comparison between the 1D modeling and two-dimensional (2D) simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement. We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model. Based on the predictions, the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined. Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional (3D) modeling tools through rapid parameter scanning.
Keywords:  divertor detachment      impurity seeding      one-dimensional modeling  
Received:  25 January 2024      Revised:  16 April 2024      Accepted manuscript online:  24 April 2024
PACS:  52.55.Rk (Power exhaust; divertors)  
  52.65.-y (Plasma simulation)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE03030001) and the National Natural Science Foundation of China (Grant No. 12075283).
Corresponding Authors:  Xiao-Ju Liu, Guo-Qiang Li     E-mail:  julie1982@ipp.ac.cn;ligq@ipp.ac.cn

Cite this article: 

Wen-Jie Zhou(周文杰), Xiao-Ju Liu(刘晓菊), Xiao-He Wu(邬潇河), Bang Li(李邦), Qi-Qi Shi(石奇奇), Hao-Chen Fan(樊皓尘), Yan-Jie Yang(杨艳杰), and Guo-Qiang Li(李国强) Calculation and prediction of divertor detachment via impurity seeding by using one-dimensional model 2024 Chin. Phys. B 33 085205

[1] Gunn J P, Carpentier-Chouchana S, Escourbiac F, Hirai T, Panayotis S, Pitts R A, Corre Y, Dejarnac R, Firdaouss M, Kočan M, Komm M, Kukushkin A, Languille P, Missirlian M, Zhao W and Zhong G 2017 Nucl. Fusion 57 046025
[2] Zhuang G, Li G Q, Li J, Wan Y X, Liu Y, Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P and Xiao B J 2019 Nucl. Fusion 59 112010
[3] Kallenbach A, Bernert M, Beurskens M, Casali L, Dunne M, Eich T, Giannone L, Herrmann A, Maraschek M, Potzel S, Reimold F, Rohde V, Schweinzer J, Viezzer E and Wischmeier M 2015 Nucl. Fusion 55 053026
[4] Covele B, Kotschenreuther M, Mahajan S, Valanju P, Leonard A, Watkins J, Makowski M, Fenstermacher M and Si H 2017 Nucl. Fusion 57 086017
[5] Jaervinen A E, Giroud C, Groth M, et al. 2016 Nucl. Fusion 56 046012
[6] Nakano T and Asakura N 2019 Nucl. Mater. Energy 18 356
[7] Meng L Y, Wang L, Wang H Q, et al. 2022 Nucl. Fusion 62 086027
[8] Reinke M L, Hughes J W, Loarte A, Brunner D, Hutchinson I H, LaBombard B, Payne J and Terry J L 2011 J. Nucl. Mater. 415 S340
[9] Wischmeier M 2015 J. Nucl. Mater. 463 22
[10] Liu X J, Xu G L, Ding R, Jia G Z, Sang C F, Si H, Nian F F, Yang Z S, Li G Q, Chan V S, Deng G Z, Gao S L and Gao X 2020 Phys. Plasmas 27 092508
[11] Canik J M, Briesemeister A R, Lasnier C J, Leonard A W, Lore J D, McLean A G and Watkins J G 2015 J. Nucl. Mater. 463 569
[12] Dudson B D, Allen J, Body T, Chapman B, Lau C, Townley L, Moulton D, Harrison J and Lipschultz B 2019 Plasma Phys. Control. Fusion 61 065008
[13] Togo S, Nakamura M, Ogawa Y, Shimizu K, Takizuka T and Hoshino K 2013 Plasma Fusion Res. 8 2403096
[14] Derks G L, Frankemölle J P K W, Koenders J T W, van Berkel M, Reimerdes H, Wensing M and Westerhof E 2022 Plasma Phys. Control. Fusion 64 125013
[15] Zhou Y, Dudson B, Militello F, Verhaegh K and Myatra O 2022 Plasma Phys. Control. Fusion 64 065006
[16] Nakamura M, Togo S, Ito M and Ogawa Y 2011 Plasma Fusion Res. 6 2403098
[17] Tsubotani Y, Tatsumi R, Hoshino K and Hatayama A 2019 Plasma Fusion Res. 14 2403108
[18] Siccinio M, Fable E, Lackner K, Scarabosio A, Wenninger R P and Zohm H 2016 Plasma Phys. Control. Fusion 58 125011
[19] Reinke M 2017 Nucl. Fusion 57 034004
[20] Zohm H 2019 J. Fusion Energy 38 3
[21] Wenninger R, Arbeiter F, Aubert J, et al. 2015 Nucl. Fusion 55 063003
[22] Eich T, Sieglin B, Scarabosio A, Fundamenski W, Goldston R J, Herrmann A and Team A U 2011 Phys. Rev. Lett. 107 215001
[23] Stangeby P C and Leonard A W 2011 Nucl. Fusion 51 063001
[24] Post D, Abdallah J, Clark R E H and Putvinskaya N 1995 Phys. Plasmas 2 2328
[25] Kallenbach A, Bernert M, Dux R, Reimold F and Wischmeier M 2016 Plasma Phys. Control. Fusion 58 045013
[26] Eich T, Leonard A W, Pitts R A, Fundamenski W, Goldston R J, Gray T K, Herrmann A, Kirk A, Kallenbach A, Kardaun O, Kukushkin A S, LaBombard B, Maingi R, Makowski M A, Scarabosio A, Sieglin B, Terry J and Thornton A 2013 Nucl. Fusion 53 093031
[27] Xu X Q, Li N M, Li Z Y, Chen B, Xia T Y, Tang T F, Zhu B and Chan V S 2019 Nucl. Fusion 59 126039
[28] ADAS manual and documentation 2016 www.adas.ac.uk/manual.php
[29] Goldston R J, Reinke M L and Schwartz J A 2017 Plasma Phys. Control. Fusion 59 055015
[30] Kallenbach A, Bernert M, Dux R, Casali L, Eich T, Giannone L, Herrmann A, McDermott R, Mlynek A, Müller H W, Reimold F, Schweinzer J, Sertoli M, Tardini G, Treutterer W, Viezzer E, Wenninger R and Wischmeier M 2013 Plasma Phys. Control. Fusion 55 124041
[31] Stangeby P C 2018 Plasma Phys. Control. Fusion 60 044022
[32] Huang J, Suzuki Y, Nojiri K and Ashikawa N 2021 Plasma Sci. Technol. 23 084001
[33] Du H L, Sang C L, Wang L, Bonnin X, Wang H Q, Sun J Z and Wang D Z 2017 Nucl. Fusion 57 116022
[34] Chen L, Xu G S, Yan N, et al. 2018 Phys. Plasmas 25 072504
[35] Lin X, Yang Q Q, Xu G S, et al. 2021 Nucl. Fusion 61 026014
[36] Xu J C, Wang L, Xu G S, Luo G N, Yao D M, Li Q, Cao L, Chen L, Zhang W, Liu S C, Wang H Q, Jia M N, Feng W, Deng G Z, Hu L Q, Wan B N, Li J, Sun Y W and Guo H Y 2016 Rev. Sci. Instrum. 87 083504
[37] Chen J B, Duan Y M, Yang Z S, Wang L, Wu K, Li K D, Ding F, Mao H M, Xu J C, Gao W, Zhang L, Wu J H and Luo G N 2017 Chin. Phys. B 26 095205
[38] Chen Y P, Wang F Q, Zha X J, Hu L Q, Guo H Y, Wu Z W, Zhang X D, Wan B N and Li J G 2013 Phys. Plasmas 20 022311
[39] Deng G Z, Xu J C, Liu X, et al. 2018 Plasma Phys. Control. Fusion 60 045001
[40] Li K D, Yang Z S, Wang H Q, et al. 2021 Nucl. Fusion 61 066013
[41] Si H, Ding R, Senichenkov I, Rozhansky V, Molchanov P, Liu X J, Jia G Z, Sang C F, Mao S F, Chan V and the CFETR Team 2022 Nucl. Fusion 62 026031
[42] Liu X J, Deng G Z, Wang L, Liu S C, Zhang L, Li G Q and Gao X 2017 Phys. Plasmas 24 122509
[43] Wang L, Wang H Q, Eldon D, et al. 2022 Nucl. Fusion 62 076002
[44] Eich T, Goldston R J, Kallenbach A, Sieglin B and Sun H J 2018 Nucl. Fusion 58 034001
[45] Chu Y Q, Zhang B S, Li P, Yang X D, Liu H Q, Jie Y X, Wu C B, Zhang W M, Li K D, Zhou T F, He L, Zang Q, Lian H, Zhong F B, Zhu R J, Zhang L F and Hanada K 2023 Nucl. Fusion 63 086021
[46] Kallenbach A, Bernert M, Dux R, Eich T, Henderson S S, Pütterich T, Reimold F, Rohde V and Sun H J 2019 Nucl. Mater. Energy 18 166
[47] Kallenbach A, Balden M, Dux R, Eich T, Giroud C, Huber A, Maddison G P, Mayer M, McCormick K, Neu R, Petrie T W, Pütterich T, Rapp J, Reinke M L, Schmid K, Schweinzer J and Wolfe S 2011 J. Nucl. Mater. 415 S19
[48] Hoshino K, Asakura N, Shimizu K, Tokunaga S, Takizuka T, Someya Y, Nakamura M, Utoh H, Sakamoto Y and Tobita K 2014 Plasma Fusion Res. 9 3403070
[49] Asakura N, Hoshino K, Homma Y and Sakamoto Y 2021 Nucl. Mater. Energy 26 100864
[50] Asakura N, Hoshino K, Kakudate S, Subba F, You J H, Wiesen S, Rognlien T D, Ding R and Kwon S 2023 Nucl. Mater. Energy 35 101446
[51] Bernert M, Eich T, Burckhart A, Fuchs J C, Giannone L, Kallenbach A, McDermott R M, Sieglin B and Team A U 2014 Rev. Sci. Instrum. 85 033503
[1] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[2] Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment
Yu-Chuan Luo(罗玉川), Rong Yan(鄢容), Guo Pu(蒲国), Hong-Bin Wang(王宏彬), Zhi-Jun Wang(王志君), Chi Yang(杨驰), Li Yang(杨黎), Heng-Xin Guo(郭恒鑫), Zhi-Bing Zhou(周志兵), Bo Chen(陈波), Jian-Jun Chen(陈建军), Fu-Jun Gou(芶富均), Zong-Biao Ye(叶宗标), and Kun Zhang(张坤). Chin. Phys. B, 2022, 31(4): 045203.
[3] Hardening effect of multi-energyW2+-ion irradiation on tungsten–potassium alloy
Yang-Yi-Peng Song(宋阳一鹏), Wen-Bin Qiu(邱文彬), Long-Qing Chen(陈龙庆), Xiao-Liang Yang(杨晓亮), Hao Deng(邓浩), Chang-Song Liu(刘长松), Kun Zhang(张坤)†, and Jun Tang(唐军)‡. Chin. Phys. B, 2020, 29(10): 105202.
[4] Irradiation hardening behaviors of tungsten-potassium alloy studied by accelerated 3-MeV W2+ ions
Xiao-Liang Yang(杨晓亮), Long-Qing Chen(陈龙庆), Wen-Bin Qiu(邱文彬), Yang-Yi-Peng Song(宋阳一鹏), Yi Tang(唐毅), Xu-Dong Cui(崔旭东), Chang-Song Liu(刘长松), Yan Jiang(蒋燕), Tao Zhang(张涛), Jun Tang(唐军). Chin. Phys. B, 2020, 29(4): 046102.
[5] Numerical study of influence of J×B force on melt layer under conditions relevant to ITER ELMs
Yan Huang(黄艳), Ji-Zhong Sun(孙继忠), Juan Cai(蔡娟), Zhen-Yue Sun(孙振月), Chao-Feng Sang(桑超峰), De-Zhen Wang(王德真). Chin. Phys. B, 2019, 28(4): 045201.
[6] Radiative divertor behavior and physics in Ar seeded plasma on EAST
Jingbo Chen(陈竞博), Yanmin Duan(段艳敏), Zhongshi Yang(杨钟时), Liang Wang(王亮), Kai Wu(吴凯), Kedong Li(李克栋), Fang Ding(丁芳), Hongmin Mao(毛红敏), Jichan Xu(许吉禅), Wei Gao(高伟), Ling Zhang(张凌), Jinhua Wu(吴金华), Guang-Nan Luo(罗广南), EAST Team. Chin. Phys. B, 2017, 26(9): 095205.
[7] Effects of some parameters on the divertor plasma sheath characteristics and fuel retention in castellated tungsten tile gaps
Sang Chao-Feng (桑超峰), Dai Shu-Yu (戴舒宇), Sun Ji-Zhong (孙继忠), Bonnin Xavier, Xu Qian (徐倩), Ding Fang (丁芳), Wang De-Zhen (王德真). Chin. Phys. B, 2014, 23(11): 115201.
[8] Toroidicity and shape dependence of peeling mode growth rates in axisymmetric toroidal plasmas
Shi Bing-Ren (石秉仁). Chin. Phys. B, 2014, 23(7): 075206.
[9] Reconstruction of heat flux profile on the HL-2A divertor plate with a three-dimensional analysis model
Gao Jin-Ming (高金明), Li Wei (李伟), Xia Zhi-Wei (夏志伟), Pan Yu-Dong (潘宇东), Lu Jie (卢杰), Yi Ping (易萍), Liu Yi (刘仪). Chin. Phys. B, 2013, 22(1): 015202.
[10] Self-consistent diverted tokamak equilibria with nonzero edge current
Shi Bing-Ren(石秉仁) . Chin. Phys. B, 2012, 21(4): 045203.
[11] Properties of plasma radiation during discharges with improved confinement on HL-2A Tokamak
Gao Jin-Ming(高金明), Liu Yi(刘仪), Li Wei(李伟), Cui Zheng-Ying(崔正英), Zhou Yan(周艳), Huang Yuan(黄渊), and Ji Xiao-Quan(季小全). Chin. Phys. B, 2010, 19(11): 115201.
[12] Mitigation and prediction of disruption on the HL-2A Tokamak
Zheng Yong-Zhen(郑永真), Qiu Ying(邱银), Zhang Peng(张鹏),Huang Yuan(黄渊), Cui Zheng-Ying(崔正英),Sun Ping(孙平), and Yang Qing-Wei(杨青巍) . Chin. Phys. B, 2009, 18(12): 5406-5413.
[13] Density and impurity profile behaviours in HL-2A tokamak with different gas fuelling methods
Cui Zheng-Ying(崔正英), Zhou Yan(周艳), Li Wei(李伟), Feng Bei-Bin(冯北滨), Sun Ping(孙平), Dong Chun-Feng(董春凤), Liu Yi(刘仪), Hong Wen-Yu(洪文玉), Yang Qing-Wei(杨青巍), Ding Xuan-Tong(丁玄同), and Duan Xu-Ru (段旭如). Chin. Phys. B, 2009, 18(8): 3473-3483.
[14] Effects of a liquid lithium curtain as the first wall in a fusion reactor plasma
Li Cheng-Yue(李承跃), J. P. Allain, and Deng Bai-Quan(邓柏权). Chin. Phys. B, 2007, 16(11): 3312-3318.
[15] The first results of divertor discharge and supersonic molecular beam injection on the HL-2A tokamak
Yao Liang-Hua(姚良骅), Yuan Bau-Shan(袁保山), Feng Bei-Bin(冯北滨), Chen Cheng-Yuan(陈程远), Hong Wen-Yu(洪文玉), and Li Ying-Liang(李英量). Chin. Phys. B, 2007, 16(1): 200-206.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[10] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .