PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Calculation and prediction of divertor detachment via impurity seeding by using one-dimensional model |
Wen-Jie Zhou(周文杰)1,2, Xiao-Ju Liu(刘晓菊)1,†, Xiao-He Wu(邬潇河)1,2, Bang Li(李邦)1,2, Qi-Qi Shi(石奇奇)1,2, Hao-Chen Fan(樊皓尘)1,2, Yan-Jie Yang(杨艳杰)1,2, and Guo-Qiang Li(李国强)1,‡ |
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates, thereby extending the lifetime of divertor components for fusion devices. In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design, a one-dimensional (1D) modeling code for the operating point of impurity seeded detached divertor is developed based on Python language, which is a fluid model based on previous work (Plasma Phys. Control. Fusion 58 045013 (2016)). The experimental observation of the onset of divertor detachment by neon (Ne) and argon (Ar) seeding in EAST is well reproduced by using the 1D modeling code. The comparison between the 1D modeling and two-dimensional (2D) simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement. We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model. Based on the predictions, the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined. Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional (3D) modeling tools through rapid parameter scanning.
|
Received: 25 January 2024
Revised: 16 April 2024
Accepted manuscript online:
|
PACS:
|
52.55.Rk
|
(Power exhaust; divertors)
|
|
52.65.-y
|
(Plasma simulation)
|
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE03030001) and the National Natural Science Foundation of China (Grant No. 12075283). |
Corresponding Authors:
Xiao-Ju Liu, Guo-Qiang Li
E-mail: julie1982@ipp.ac.cn;ligq@ipp.ac.cn
|
Cite this article:
Wen-Jie Zhou(周文杰), Xiao-Ju Liu(刘晓菊), Xiao-He Wu(邬潇河), Bang Li(李邦), Qi-Qi Shi(石奇奇), Hao-Chen Fan(樊皓尘), Yan-Jie Yang(杨艳杰), and Guo-Qiang Li(李国强) Calculation and prediction of divertor detachment via impurity seeding by using one-dimensional model 2024 Chin. Phys. B 33 085205
|
[1] Gunn J P, Carpentier-Chouchana S, Escourbiac F, Hirai T, Panayotis S, Pitts R A, Corre Y, Dejarnac R, Firdaouss M, Kočan M, Komm M, Kukushkin A, Languille P, Missirlian M, Zhao W and Zhong G 2017 Nucl. Fusion 57 046025 [2] Zhuang G, Li G Q, Li J, Wan Y X, Liu Y, Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P and Xiao B J 2019 Nucl. Fusion 59 112010 [3] Kallenbach A, Bernert M, Beurskens M, Casali L, Dunne M, Eich T, Giannone L, Herrmann A, Maraschek M, Potzel S, Reimold F, Rohde V, Schweinzer J, Viezzer E and Wischmeier M 2015 Nucl. Fusion 55 053026 [4] Covele B, Kotschenreuther M, Mahajan S, Valanju P, Leonard A, Watkins J, Makowski M, Fenstermacher M and Si H 2017 Nucl. Fusion 57 086017 [5] Jaervinen A E, Giroud C, Groth M, et al. 2016 Nucl. Fusion 56 046012 [6] Nakano T and Asakura N 2019 Nucl. Mater. Energy 18 356 [7] Meng L Y, Wang L, Wang H Q, et al. 2022 Nucl. Fusion 62 086027 [8] Reinke M L, Hughes J W, Loarte A, Brunner D, Hutchinson I H, LaBombard B, Payne J and Terry J L 2011 J. Nucl. Mater. 415 S340 [9] Wischmeier M 2015 J. Nucl. Mater. 463 22 [10] Liu X J, Xu G L, Ding R, Jia G Z, Sang C F, Si H, Nian F F, Yang Z S, Li G Q, Chan V S, Deng G Z, Gao S L and Gao X 2020 Phys. Plasmas 27 092508 [11] Canik J M, Briesemeister A R, Lasnier C J, Leonard A W, Lore J D, McLean A G and Watkins J G 2015 J. Nucl. Mater. 463 569 [12] Dudson B D, Allen J, Body T, Chapman B, Lau C, Townley L, Moulton D, Harrison J and Lipschultz B 2019 Plasma Phys. Control. Fusion 61 065008 [13] Togo S, Nakamura M, Ogawa Y, Shimizu K, Takizuka T and Hoshino K 2013 Plasma Fusion Res. 8 2403096 [14] Derks G L, Frankemölle J P K W, Koenders J T W, van Berkel M, Reimerdes H, Wensing M and Westerhof E 2022 Plasma Phys. Control. Fusion 64 125013 [15] Zhou Y, Dudson B, Militello F, Verhaegh K and Myatra O 2022 Plasma Phys. Control. Fusion 64 065006 [16] Nakamura M, Togo S, Ito M and Ogawa Y 2011 Plasma Fusion Res. 6 2403098 [17] Tsubotani Y, Tatsumi R, Hoshino K and Hatayama A 2019 Plasma Fusion Res. 14 2403108 [18] Siccinio M, Fable E, Lackner K, Scarabosio A, Wenninger R P and Zohm H 2016 Plasma Phys. Control. Fusion 58 125011 [19] Reinke M 2017 Nucl. Fusion 57 034004 [20] Zohm H 2019 J. Fusion Energy 38 3 [21] Wenninger R, Arbeiter F, Aubert J, et al. 2015 Nucl. Fusion 55 063003 [22] Eich T, Sieglin B, Scarabosio A, Fundamenski W, Goldston R J, Herrmann A and Team A U 2011 Phys. Rev. Lett. 107 215001 [23] Stangeby P C and Leonard A W 2011 Nucl. Fusion 51 063001 [24] Post D, Abdallah J, Clark R E H and Putvinskaya N 1995 Phys. Plasmas 2 2328 [25] Kallenbach A, Bernert M, Dux R, Reimold F and Wischmeier M 2016 Plasma Phys. Control. Fusion 58 045013 [26] Eich T, Leonard A W, Pitts R A, Fundamenski W, Goldston R J, Gray T K, Herrmann A, Kirk A, Kallenbach A, Kardaun O, Kukushkin A S, LaBombard B, Maingi R, Makowski M A, Scarabosio A, Sieglin B, Terry J and Thornton A 2013 Nucl. Fusion 53 093031 [27] Xu X Q, Li N M, Li Z Y, Chen B, Xia T Y, Tang T F, Zhu B and Chan V S 2019 Nucl. Fusion 59 126039 [28] ADAS manual and documentation 2016 www.adas.ac.uk/manual.php [29] Goldston R J, Reinke M L and Schwartz J A 2017 Plasma Phys. Control. Fusion 59 055015 [30] Kallenbach A, Bernert M, Dux R, Casali L, Eich T, Giannone L, Herrmann A, McDermott R, Mlynek A, Müller H W, Reimold F, Schweinzer J, Sertoli M, Tardini G, Treutterer W, Viezzer E, Wenninger R and Wischmeier M 2013 Plasma Phys. Control. Fusion 55 124041 [31] Stangeby P C 2018 Plasma Phys. Control. Fusion 60 044022 [32] Huang J, Suzuki Y, Nojiri K and Ashikawa N 2021 Plasma Sci. Technol. 23 084001 [33] Du H L, Sang C L, Wang L, Bonnin X, Wang H Q, Sun J Z and Wang D Z 2017 Nucl. Fusion 57 116022 [34] Chen L, Xu G S, Yan N, et al. 2018 Phys. Plasmas 25 072504 [35] Lin X, Yang Q Q, Xu G S, et al. 2021 Nucl. Fusion 61 026014 [36] Xu J C, Wang L, Xu G S, Luo G N, Yao D M, Li Q, Cao L, Chen L, Zhang W, Liu S C, Wang H Q, Jia M N, Feng W, Deng G Z, Hu L Q, Wan B N, Li J, Sun Y W and Guo H Y 2016 Rev. Sci. Instrum. 87 083504 [37] Chen J B, Duan Y M, Yang Z S, Wang L, Wu K, Li K D, Ding F, Mao H M, Xu J C, Gao W, Zhang L, Wu J H and Luo G N 2017 Chin. Phys. B 26 095205 [38] Chen Y P, Wang F Q, Zha X J, Hu L Q, Guo H Y, Wu Z W, Zhang X D, Wan B N and Li J G 2013 Phys. Plasmas 20 022311 [39] Deng G Z, Xu J C, Liu X, et al. 2018 Plasma Phys. Control. Fusion 60 045001 [40] Li K D, Yang Z S, Wang H Q, et al. 2021 Nucl. Fusion 61 066013 [41] Si H, Ding R, Senichenkov I, Rozhansky V, Molchanov P, Liu X J, Jia G Z, Sang C F, Mao S F, Chan V and the CFETR Team 2022 Nucl. Fusion 62 026031 [42] Liu X J, Deng G Z, Wang L, Liu S C, Zhang L, Li G Q and Gao X 2017 Phys. Plasmas 24 122509 [43] Wang L, Wang H Q, Eldon D, et al. 2022 Nucl. Fusion 62 076002 [44] Eich T, Goldston R J, Kallenbach A, Sieglin B and Sun H J 2018 Nucl. Fusion 58 034001 [45] Chu Y Q, Zhang B S, Li P, Yang X D, Liu H Q, Jie Y X, Wu C B, Zhang W M, Li K D, Zhou T F, He L, Zang Q, Lian H, Zhong F B, Zhu R J, Zhang L F and Hanada K 2023 Nucl. Fusion 63 086021 [46] Kallenbach A, Bernert M, Dux R, Eich T, Henderson S S, Pütterich T, Reimold F, Rohde V and Sun H J 2019 Nucl. Mater. Energy 18 166 [47] Kallenbach A, Balden M, Dux R, Eich T, Giroud C, Huber A, Maddison G P, Mayer M, McCormick K, Neu R, Petrie T W, Pütterich T, Rapp J, Reinke M L, Schmid K, Schweinzer J and Wolfe S 2011 J. Nucl. Mater. 415 S19 [48] Hoshino K, Asakura N, Shimizu K, Tokunaga S, Takizuka T, Someya Y, Nakamura M, Utoh H, Sakamoto Y and Tobita K 2014 Plasma Fusion Res. 9 3403070 [49] Asakura N, Hoshino K, Homma Y and Sakamoto Y 2021 Nucl. Mater. Energy 26 100864 [50] Asakura N, Hoshino K, Kakudate S, Subba F, You J H, Wiesen S, Rognlien T D, Ding R and Kwon S 2023 Nucl. Mater. Energy 35 101446 [51] Bernert M, Eich T, Burckhart A, Fuchs J C, Giannone L, Kallenbach A, McDermott R M, Sieglin B and Team A U 2014 Rev. Sci. Instrum. 85 033503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|