Effects of a liquid lithium curtain as the first wall in a fusion reactor plasma
Li Cheng-Yue(李承跃)a)†, J. P. Allainb), and Deng Bai-Quan(邓柏权)c)
a School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China; b Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA; c Southwestern Institute of Physics, Chengdu 610041, China
AbstractThis paper explores the effect of a liquid lithium curtain on fusion reactor plasma, such curtain is utilized as the first wall for the engineering outline design of the Fusion Experimental Breeder (FEB-E). The relationships between the surface temperature of a liquid lithium curtain and the effective plasma charge, fuel dilution and fusion power production have been derived. Results indicate that under normal operation, the evaporation of liquid lithium does not seriously affect the effective plasma charge, but effects on fuel dilution and fusion power are more sensitive. As an example, it has investigated the relationships between the liquid lithium curtain flow velocity and the rise of surface temperature based on operation scenario II of the FEB-E design with reversed shear configuration and high power density. Results show that even if the liquid lithium curtain flow velocity is as low as 0.5 m/s, the effects of evaporation from the liquid lithium curtain on plasma are negligible. In the present design, the sputtering of liquid lithium curtain and the particle removal effects of the divertor are not yet considered in detail. Further studies are in progress, and in this work implication of lithium erosion and divertor physics on fusion reactor operation are discussed.
Li Cheng-Yue(李承跃), J. P. Allain, and Deng Bai-Quan(邓柏权) Effects of a liquid lithium curtain as the first wall in a fusion reactor plasma 2007 Chinese Physics 16 3312
[1]
AC operation and runaway electron behaviour in HT-7 tokamak Lu Hong-Wei(卢洪伟), Hu Li-Qun(胡立群), Zhou Rui-Jie(周瑞杰), Lin Shi-Yao(林士耀), Zhong Guo-Qiang(钟国强), Wang Shao-Feng(王少锋), Chen Kai-Yun(陈开云), Xu Ping(许平), Zhang Ji-Zong(张继宗) Ling Bi-Li(凌必利), Mao Song-Tao(毛松涛), Duan Yan-Min(段艳敏), and HT-7 Team. Chin. Phys. B, 2010, 19(6): 065201.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.