Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087301    DOI: 10.1088/1674-1056/ad462f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev  

Topological superconductors with spin-triplet pairings and Majorana Fermi arcs

Shi Huang(黄石) and Xi Luo(罗熙)†
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  We construct a three-dimensional topological superconductor Bogoliubov-de Gennes (BdG) Hamiltonian with the normal state being a three-dimensional topological insulator. By introducing inter-orbital spin-triplet pairings term $\varDelta_3$, there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface, similar to the case of Weyl semimetal. Furthermore, by adding an inversion-breaking term to the normal state, momentum-independent pairing terms with different parities can coexist in the BdG Hamiltonian, which creates more Majorana modes similar to Andreev bound states and a richer phase diagram.
Keywords:  topological surface states      topological superconductors      topological nodes      Weyl points      Majorana Fermi arcs  
Received:  11 January 2024      Revised:  19 April 2024      Accepted manuscript online:  02 May 2024
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  74.20.-z (Theories and models of superconducting state)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174067 and 11804223).
Corresponding Authors:  Xi Luo     E-mail:  xiluo@usst.edu.cn

Cite this article: 

Shi Huang(黄石) and Xi Luo(罗熙) Topological superconductors with spin-triplet pairings and Majorana Fermi arcs 2024 Chin. Phys. B 33 087301

[1] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[2] Xu G, Weng H M, Wang Z J, et al. 2011 Phys. Rev. Lett. 107 186806
[3] Weng H M, Fang C, Fang Z, et al. 2015 Phys. Rev. X 5 011029
[4] Huang S M, Xu S Y, Belopolski I, et al. 2015 Nat. Commun. 6 7373
[5] Lv B Q, Weng H M, Fu B B, et al. 2015 Phys. Rev. X 5 031013
[6] Lv B Q, Xu N, Weng H M, et al. 2015 Nat. Phys. 11 724
[7] Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613
[8] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[9] Wang Z, Sun Y, Chen X Q, et al. 2012 Phys. Rev. B 85 195320
[10] Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126
[11] Weng H M, Liang Y, Xu Q, et al. 2015 Phys. Rev. B 92 045108
[12] Bradlyn B, Cano J, Wang Z J, et al. 2016 Science 353 558
[13] Weng H M, Fang C, Fang Z, et al. 2016 Phys. Rev. B 93 241202
[14] Li F Y, Li Y D, Kim Y B, et al. 2016 Nat. Commun. 7 12691
[15] Prodan E and Prodan C 2009 Phys. Rev. Lett. 103 248101
[16] Zhang L F, Ren J, Wang J S and Li B W 2010 Phys. Rev. Lett. 105 225901
[17] He H, Qiu C, Ye L, et al. 2018 Nature 560 61
[18] Khanikaev A B, Hossein M S, Tse W K, et al. 2013 Nat. Mater. 12 233
[19] Chen W J, Jiang S J, Chen X D, et al. 2014 Nat. Commun. 5 5782
[20] Ding K, Ma G C, Xiao M, et al. 2016 Phys. Rev. X 6 021007
[21] Kitaev A 2003 Ann. Phys. (NY) 303 2
[22] Kitaev A 2001 Phys. Usp. 44 131
[23] Lian B, Sun X Q, Vaezi A, et al. 2018 Proc. Natl. Acad. Sci. USA 115 10938
[24] Zhan Y M, Chen Y G, Chen B, et al. 2022 New J. Phys. 24 043009
[25] Majorana E 1937 Il Nuovo Cimento 14 171
[26] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[27] Wray L A, Xu S Y, Xia Y, et al. 2010 Nat. Phys. 6 855
[28] Sato M 2006 Phys. Rev. B 73 214502
[29] Yang S Y A, Pan H and Zhang F 2014 Phys. Rev. Lett. 113 046401
[30] Sato M and Fujimoto S 2010 Phys. Rev. Lett. 105 217001
[31] Zhang P, Yaji K, Hashimoto T, et al. 2018 Science 360 182
[32] Zhang P, Wang Z J, Wu X X, et al. 2019 Nat. Phys. 15 41
[33] Wang D F, Kong L Y, Fan P, et al. 2018 Science 362 333
[34] Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296
[35] Bernevig B A, Hughes T L and Zhang S C 2019 Science 314 1757
[36] Zhang H J, Liu C X, Qi X L, et al. 2009 Nat. Phys. 5 438
[37] Zhang R X, Cole W S and Das Sarma S 2019 Phys. Rev. Lett. 122 187001
[38] Wang Z J, Zhang P, Xu G, et al. 2015 Phys. Rev. B 92 115119
[39] Nakosai S, Tanaka Y and Nagaosa N 2012 Phys. Rev. Lett. 108 147003
[40] Zhang R X and Das Sarma S 2021 Phys. Rev. Lett. 126 137001
[41] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001
[42] Xu Y M, Huang Y B, Cui X Y, et al. 2011 Nat. Phys. 7 198
[43] Ueno Y, Yamakage A, Tanaka Y, et al. 2013 Phys. Rev. Lett. 111 087002
[44] Shiozaki K and Sato M 2014 Phys. Rev. B 90 165114
[45] Sato M and Fujimoto S 2009 Phys. Rev. B 79 094504
[46] Sedlmayr N, Kaladzhyan V, Dutreix C, et al. 2017 Phys. Rev. B 96 184516
[47] Setiawan F, William S Cole, Jay D S, et al. 2017 Phys. Rev. B 95 020501
[48] Schnyder A P, Brydon P M R, Manske D, et al. 2010 Phys. Rev. B 82 184508
[49] Goll G 2006 Physica B 383 71
[50] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142
[1] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[2] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
No Suggested Reading articles found!