Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057102    DOI: 10.1088/1674-1056/ad3908
DATA PAPER Prev   Next  

Prediction of impurity spectrum function by deep learning algorithm

Ting Liu(刘婷)1, Rong-Sheng Han(韩榕生)1,2,3, and Liang Chen(陈亮)1,2,3,†
1 School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China;
2 Institute of Condensed Matter Physics, North China Electric Power University, Beijing 102206, China;
3 Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071003, China
Abstract  By using the numerical renormalization group (NRG) method, we construct a large dataset with about one million spectral functions of the Anderson quantum impurity model. The dataset contains the density of states (DOS) of the host material, the strength of Coulomb interaction between on-site electrons ($U$), and the hybridization between the host material and the impurity site ($\varGamma$). The continued DOS and spectral functions are stored with Chebyshev coefficients and wavelet functions, respectively. From this dataset, we build seven different machine learning networks to predict the spectral function from the input data, DOS, $U$, and $\varGamma$. Three different evaluation indexes, mean absolute error (MAE), relative error (RE) and root mean square error (RMSE), are used to analyze the prediction abilities of different network models. Detailed analysis shows that, for the two kinds of widely used recurrent neural networks (RNNs), gate recurrent unit (GRU) has better performance than the long short term memory (LSTM) network. A combination of bidirectional GRU (BiGRU) and GRU has the best performance among GRU, BiGRU, LSTM, and BiLSTM. The MAE peak of ${\rm BiGRU+GRU}$ reaches 0.00037. We have also tested a one-dimensional convolutional neural network (1DCNN) with 20 hidden layers and a residual neural network (ResNet), we find that the 1DCNN has almost the same performance of the $\rm BiGRU+GRU$ network for the original dataset, while the robustness testing seems to be a little weak than ${\rm BiGRU+GRU}$ when we test all these models on two other independent datasets. The ResNet has the worst performance among all the seven network models. The datasets presented in this paper, including the large data set of the spectral function of Anderson quantum impurity model, are openly available at https://doi.org/10.57760/sciencedb.j00113.00192.
Keywords:  machine learning      Anderson impurity model      spectral function  
Received:  01 December 2023      Revised:  09 March 2024      Accepted manuscript online:  29 March 2024
PACS:  71.10.-w (Theories and models of many-electron systems)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
  89.20.Ff (Computer science and technology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174101) and the Fundamental Research Funds for the Central Universities (Grant No. 2022MS051).
Corresponding Authors:  Liang Chen     E-mail:  slchern@ncepu.edu.cn

Cite this article: 

Ting Liu(刘婷), Rong-Sheng Han(韩榕生), and Liang Chen(陈亮) Prediction of impurity spectrum function by deep learning algorithm 2024 Chin. Phys. B 33 057102

[1] Anderson P W 1961 Phys. Rev. 124 41
[2] Anderson P W 1970 J. Phys. C Solid State Phys. 3 2436
[3] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[4] Wiegmann P B and Tsvelick A M 1983 J. Phys. C Solid State Phys. 16 2281
[5] Tsvelick A M and Wiegmann P B 1983 Adv. Phys. 32 453
[6] Affleck I 1990 Nucl. Phys. B 336 517
[7] Affleck I 2009 arXiv:0809.3474v2
[cond-mat.str-el]
[8] Coleman P 1984 Phys. Rev. B 29 3035
[9] Coleman P 1984 Phys. Rev. B 35 5072
[10] Pruschke Z and Grewe N 1989 Z. Phys. B: Condens. Matter 74 439
[11] Haule K, Kirchner S, Kroha J and Wölfle P 2001 Phys. Rev. B 64 155111
[12] Tosi L, Roura-Bas P, Llois A M and Manuel L O 2011 Phys. Rev. B 83 073301
[13] Wilson K G 1975 Rev. Mod. Phys. 47 773
[14] Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
[15] Hirsch J E 1983 Phys. Rev. B 28 4059
[16] Hirsch J E and Fye R M 1986 Phys. Rev. Lett. 56 2521
[17] Fye R M and Hirsch J E 1988 Phys. Rev. B 38 433
[18] Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
[19] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, VogtMaranto L and Zdeborová L 2019 Rev. Mod. Phys. 91 045002
[20] Medeiros L, Psaltis D, Lauer T R and Ozel F 2023 Astrophys. J. Lett. 947 L7
[21] Karagiorgi G, Kasieczka G, Kravitz S, Nachman B P and Shih D 2021 Nat. Rev. Phys. 4 399
[22] Boehnlein A, Diefenthaler M, Sato N, Schram M, Ziegler V, Fanelli C, Hjorth-Jensen M, Horn T, Kuchera M P, Lee D, Nazarewicz W, Ostroumov P, Orginos K, Poon A, Wang X N, Scheinker A, Smith M S and Pang L G 2022 Rev. Mod. Phys. 94 031003
[23] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431
[24] Rodriguez-Nieva J F and Scheurer M S 2019 Nat. Phys. 15 790
[25] Lustig E, Yair O, Talmon R and Segev M 2020 Phys. Rev. Lett. 125 127401
[26] Huang L and Wang L 2017 Phys. Rev. B 95 035105
[27] Schleder G R, Padilha A C M, Acosta C M, Costa M and Fazzio A 2019 J. Phys.: Mater. 2 032001
[28] Brockherde F, Vogt L, Li L, Tuckerman M E, Burke K and Müller K R 2017 Nat. Commun. 8 872
[29] Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A 2018 Nature 559 547
[30] Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A and Müller K R 2018 J. Chem. Phys. 148 241722
[31] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301
[32] Arsenault L F, Lopez-Bezanilla A, von Lilienfeld O A and Millis A J 2014 Phys. Rev. B 90 155136
[33] Sturm E J, Carbone M R, Lu D, Weichselbaum A and Konik R M 2021 Phys. Rev. B 103 245118
[34] Walker N, Kellar S, Zhang Y, Tam K M and Moreno J 2022 Crystals 12 1269
[35] Ren X Y, Han R S and Chen L 2021 J. Phys. Condens. Matter 33 495601
[36] Miles C, Carbone M R, Sturm E J, Lu D, Weichselbaum A, Barros K and Konik R M 2021 Phys. Rev. B 104 235111
[37] Žitko R and Pruschke T 2009 Phys. Rev. B 79 085106
[38] Weiße A, Wellein G, Alvermann A and Fehske H 2006 Rev. Mod. Phys. 78 275
[39] Hochreiter S and Schmidhuber J 1997 Neural Comput. 9 1735
[40] Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H and Bengio Y 2014 Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1724-1734
[41] Hinton G E, Srivastava N, Krizhevsky A, Sutskever I and Salakhutdinov R R 2012 arXiv:1207.0580v1[cs.NE]
[1] Computing large deviation prefactors of stochastic dynamical systems based on machine learning
Yang Li(李扬), Shenglan Yuan(袁胜兰), Linghongzhi Lu(陆凌宏志), and Xianbin Liu(刘先斌). Chin. Phys. B, 2024, 33(4): 040501.
[2] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[3] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[4] Recent advances in protein conformation sampling by combining machine learning with molecular simulation
Yiming Tang(唐一鸣), Zhongyuan Yang(杨中元), Yifei Yao(姚逸飞), Yun Zhou(周运), Yuan Tan(谈圆),Zichao Wang(王子超), Tong Pan(潘瞳), Rui Xiong(熊瑞), Junli Sun(孙俊力), and Guanghong Wei(韦广红). Chin. Phys. B, 2024, 33(3): 030701.
[5] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[6] An artificial neural network potential for uranium metal at low pressures
Maosheng Hao(郝茂生) and Pengfei Guan(管鹏飞). Chin. Phys. B, 2023, 32(9): 098401.
[7] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[8] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[9] Generalization properties of restricted Boltzmann machine for short-range order
M A Timirgazin and A K Arzhnikov. Chin. Phys. B, 2023, 32(6): 067401.
[10] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[11] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[12] Reconstruction and stability of Fe3O4(001) surface: An investigation based on particle swarm optimization and machine learning
Hongsheng Liu(柳洪盛), Yuanyuan Zhao(赵圆圆), Shi Qiu(邱实), Jijun Zhao(赵纪军), and Junfeng Gao(高峻峰). Chin. Phys. B, 2023, 32(5): 056802.
[13] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[14] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[15] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
No Suggested Reading articles found!