Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 056502    DOI: 10.1088/1674-1056/ad2dce
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Coupling of quasi-localized and phonon modes in glasses at low frequency

Jun Duan(段军)1,2, Song-Lin Cai(蔡松林)1,2, Gan Ding(丁淦)1, Lan-Hong Dai(戴兰宏)1,2, and Min-Qiang Jiang(蒋敏强)1,2,†
1 State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China
Abstract  Boson peak of glasses, a THz vibrational excess compared to Debye squared-frequency law, remains mysterious in condensed-matter physics and material science. It appears in many different kinds of glassy matters and is also argued to exist in damped crystals. A consensus is that boson peak originates from the coupling of the (quasi)-localized non-phonon modes and the plane-wave-like phonon modes, but the coupling behavior is still not fully understood. In this paper, by modulating the content of localized modes and the frequencies of phonon modes, the coupling is clearly reflected in the localization and anharmonicity of low-frequency vibrational modes. The coupling enhances with increasing cooling rate and sample size. For finite sample size, phonon modes do not fully intrude into the low frequency to form a dense spectrum and they are not sufficiently coupled to the localized modes, thus there is no Debye level and boson peak is ill-defined. This suggestion remains valid in the presence of thermal motions induced by temperature, even though the anharmonicity comes into play. Our results point to the coupling of quasi-localized and phonon modes and its relation to the boson peak.
Keywords:  metallic glasses      low-frequency vibrational modes      plane wave      boson peak  
Received:  25 January 2024      Revised:  25 February 2024      Accepted manuscript online:  28 February 2024
PACS:  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
  62.20.D- (Elasticity)  
  62.25.Jk (Mechanical modes of vibration)  
Fund: Project supported by the National Outstanding Youth Science Fund Project (Grant No. 12125206), the Fund from the Basic Science Center for “Multiscale Problems in Nonlinear Mechanics” (Grant No. 11988102), and the General Project of the National Natural Science Foundation of China (Grant No. 11972345).
Corresponding Authors:  Min-Qiang Jiang     E-mail:  mqjiang@imech.ac.cn

Cite this article: 

Jun Duan(段军), Song-Lin Cai(蔡松林), Gan Ding(丁淦), Lan-Hong Dai(戴兰宏), and Min-Qiang Jiang(蒋敏强) Coupling of quasi-localized and phonon modes in glasses at low frequency 2024 Chin. Phys. B 33 056502

[1] Jiang M Q, Peterlechner M, Wang Y J, Wang W H, Jiang F, Dai L H and Wilde G 2017 Appl. Phys. Lett. 111 261901
[2] Xu N, Vitelli V, Wyart M, Liu A J and Nagel S R 2009 Phys. Rev. Lett. 102 038001
[3] Zeller R C and Pohl R O 1971 Phys. Rev. B 4 2029
[4] Brink T, Koch L and Albe K 2016 Phys. Rev. B 94 224203
[5] Liu H M, Lu C L, Wang K F, Liu J M, Wang Q and Dong C 2010 Chin. Phys. B 19 017102
[6] Buchenau U, Nucker N and Dianoux A J 1984 Phys. Rev. Lett. 53 2316
[7] Duval E, Saviot L, David L, Etienne S and Jal J F 2003 Europhys. Lett. 63 778
[8] Zargar R, DeGiuli E and Bonn D 2016 Europhys. Lett. 116 68004
[9] Zhang L, Zheng J, Wang Y, Zhang L, Jin Z, Hong L, Wang Y and Zhang J 2017 Nat. Commun. 8 67
[10] Jezowski A, Strzhemechny M A, Krivchikov A I, Davydova N A, Szewczyk D, Stepanian S G, Buravtseva L M and Romantsova O O 2018 Phys. Rev. B 97 201201
[11] Grigera T S, Martín-Mayor V, Parisi G and Verrocchio P 2003 Nature 422 289
[12] Guerdane M and Teichler H 2008 Phys. Rev. Lett. 101 065506
[13] Schirmacher W, Ruocco G and Scopigno T 2007 Phys. Rev. Lett. 98 025501
[14] Shintani H and Tanaka H 2008 Nat. Mater. 7 870
[15] Franz S, Parisi G, Urbani P and Zamponi F 2015 Proc. Natl. Acad. Sci. USA 112 14539
[16] Chumakov A I, Monaco G, Monaco A, Crichton W A, Bosak A, Rueffer R, Meyer A, Kargl F, Comez L, Fioretto D, Giefers H, Roitsch S, Wortmann G, Manghnani M H, Hushur A, Williams Q, Balogh J, Parlinski K, Jochym P and Piekarz P 2011 Phys. Rev. Lett. 106 225501
[17] Hu Y C and Tanaka H 2022 Nat. Phys. 18 669
[18] Milkus R and Zaccone A 2016 Phys. Rev. B 93 094204
[19] Yang J, Wang Y J, Ma E, Zaccone A, Dai L H and Jiang M Q 2019 Phys. Rev. Lett. 122 015501
[20] Jakse N, Nassour A and Pasturel A 2012 Phys. Rev. B 85 174201
[21] Ding J, Cheng Y Q, Sheng H, Asta M, Ritchie R O and Ma E 2016 Nat. Commun. 7 13733
[22] Gurevich V L, Parshin D A and Schober H R 2003 Phys. Rev. B 67 094203
[23] Caroli C and Lemaitre A 2020 J. Chem. Phys. 153 144502
[24] Lerner E, During G and Bouchbinder E 2016 Phys. Rev. Lett. 117 035501
[25] Schober H R and Laird B B 1991 Phys. Rev. B 44 6746
[26] Ding J, Patinet S, Falk M L, Cheng Y and Ma E 2014 Proc. Natl. Acad. Sci. USA 111 14052
[27] Argon A S 1979 Acta Metall. 27 47
[28] Widmer-Cooper A, Perry H, Harrowell P and Reichman D R 2008 Nat. Phys. 4 711
[29] Manning M L and Liu A J 2011 Phys. Rev. Lett. 107 108302
[30] Yang J, Duan J, Wang Y J and Jiang M Q 2020 Eur. Phys. J. E 43 56
[31] Duan J, Wang Y J, Dai L H and Jiang M Q 2023 Phys. Rev. Mater. 7 013601
[32] Dong Y X, Zhang G H, Sun Q C, Zhao X D and Niu X N 2015 Chin. Phys. Lett. 32 126201
[33] Bouchbinder E and Lerner E 2018 New J. Phys. 20 073022
[34] Gelin S, Tanaka H and Lemaitre A 2016 Nat. Mater. 15 1177
[35] Lerner E and Bouchbinder E 2023 J. Chem. Phys. 158 194503
[36] Wang L, Ninarello A, Guan P, Berthier L, Szamel G and Flenner E 2019 Nat. Commun. 10 26
[37] Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D and Popel P 2009 Philos. Mag. 89 967
[38] Bell R J, Dean P and Hibbinsb.Dc 1970 J. Phys. C 3 2111
[39] Xu N, Vitelli V, Liu A J and Nagel S R 2010 Europhys. Lett. 90 56001
[40] Dickey J M and Paskin A 1969 Phys. Rev. 188 1407
[41] Pan S P, Qin J Y, Wang W M and Gu T K 2011 Phys. Rev. B 84 092201
[42] Shintani H and Tanaka H 2006 Nat. Phys. 2 200
[43] Rainone C, Bouchbinder E and Lerner E 2020 Proc. Natl. Acad. Sci. USA 117 5228
[44] Mizuno H, Shiba H and Ikeda A 2017 Proc. Natl. Acad. Sci. USA 114 E9767
[45] Beltukov Y M, Parshin D A, Giordano V M and Tanguy A 2018 Phys. Rev. E 98 023005
[46] opu D, Stukowski A, Stoica M and Scudino S 2017 Phys. Rev. Lett. 119 195503
[47] Taraskin S N and Elliott S R 1999 Phys. Rev. B 59 8572
[48] Léonforte F, Tanguy A, Wittmer J P and Barrat J L 2006 Phys. Rev. Lett. 97 055501
[49] Leonforte F, Boissiere R, Tanguy A, Wittmer J P and Barrat J L 2005 Phys. Rev. B 72 224206
[50] Wuttke J, Petry W, Coddens G and Fujara F 1995 Phys. Rev. E 52 4026
[51] Wischnewski A, Buchenau U, Dianoux A J, Kamitakahara W A and Zarestky J L 1998 Phys. Rev. B 57 2663
[52] Charbonneau P, Kurchan J, Parisi G, Urbani P and Zamponi F 2014 Nat. Commun. 5 3725
[53] Peng S X, Zhang C, Yang C, Li R, Zhang T, Liu L, Yu H B and Samwer K 2019 J. Chem. Phys. 150 111104
[54] Ozawa M, Ikeda A, Miyazaki K and Kob W 2018 Phys. Rev. Lett. 121 205501
[55] Ruta B, Baldi G, Giordano V M, Orsingher L, Rols S, Scarponi F and Monaco G 2010 J. Chem. Phys. 133 041101
[56] Wang Y, Hong L, Wang Y, Schirmacher W and Zhang J 2018 Phys. Rev. B 98 174207
[57] Das P, Ilyin V and Procaccia I 2019 Phys. Rev. E 100 062103
[58] Ghosh A, Chikkadi V K, Schall P, Kurchan J and Bonn D 2010 Phys. Rev. Lett. 104 248305
[59] Chen K, Manning M L, Yunker P J, Ellenbroek W G, Zhang Z, Liu A J and Yodh A G 2011 Phys. Rev. Lett. 107 108301
[60] Wang X J, Duan J, Ding G, Lu Y Z, Lu X, Dai L H and Jiang M Q 2024 Sci. China-Phys. Mech. Astron. 67 236112
[1] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[2] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[3] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[4] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[5] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[6] Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective
Shaoqin Jiang(江少钦), Yong Huang(黄勇), Maozhi Li(李茂枝). Chin. Phys. B, 2019, 28(4): 046103.
[7] Ab initio molecular dynamics study on the local structures in Ce70Al30 and La70Al30 metallic glasses
F X Li(李福祥), J B Kong(孔吉波), M Z Li(李茂枝). Chin. Phys. B, 2018, 27(5): 056102.
[8] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[9] First-principles study of structural, electronic, and optical properties of cubic InAsxNyP1-x-y triangular quaternary alloys
I Hattabi, A Abdiche, F Soyalp, R Moussa, R Riane, K Hadji, S Bin-Omran, R Khenata. Chin. Phys. B, 2017, 26(1): 017303.
[10] LaGa-based bulk metallic glasses
Lin-Zhi Zhao(赵林志), Rong-Jie Xue(薛荣洁), Wei-Hua Wang(汪卫华), Hai-Yang Bai(白海洋). Chin. Phys. B, 2017, 26(1): 018106.
[11] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
[12] Amorphous phase formation rules in high-entropy alloys
Qiu-Wei Xing(邢秋玮), Yong Zhang(张勇). Chin. Phys. B, 2017, 26(1): 018104.
[13] Generalized model for laser-induced surface structure in metallic glass
Lin-Mao Ye(叶林茂), Zhen-Wei Wu(武振伟), Kai-Xin Liu(刘凯欣), Xiu-Zhang Tang(汤秀章), Xiang-Ming Xiong (熊向明). Chin. Phys. B, 2016, 25(6): 068104.
[14] Phase and direction dependence of photorefraction in a low-frequency strong circular-polarized plane wave
Huang Yong-Sheng (黄永盛), Wang Nai-Yan (王乃彦), Tang Xiu-Zhang (汤秀章). Chin. Phys. B, 2015, 24(5): 054202.
[15] Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs):A molecular dynamics approach
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Yongqing Cai, S. A. Ahmad. Chin. Phys. B, 2013, 22(9): 096101.
No Suggested Reading articles found!