|
|
Non-Gaussianity detection of single-mode rotationally symmetric quantum states via cumulant method |
Shao-Hua Xiang(向少华)†, Li-Jun Huang(黄利军), and Xian-Wu Mi(米贤武) |
College of Physics, Electronics and Intelligent Manufacturing, Huaihua University, Huaihua 418008, China |
|
|
Abstract The non-Gaussianity of quantum states incarnates an important resource for improving the performance of continuous-variable quantum information protocols. We propose a novel criterion of non-Gaussianity for single-mode rotationally symmetric quantum states via the squared Frobenius norm of higher-order cumulant matrix for the quadrature distribution function. As an application, we study the non-Gaussianities of three classes of single-mode symmetric non-Gaussian states: a mixture of vacuum and Fock states, single-photon added thermal states, and even/odd Schrödinger cat states. It is shown that such a criterion is faithful and effective for revealing non-Gaussianity. We further extend this criterion to two cases of symmetric multi-mode non-Gaussian states and non-symmetric single-mode non-Gaussian states.
|
Received: 09 December 2023
Revised: 21 January 2024
Accepted manuscript online: 02 February 2024
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the Natural Science Foundation of Hunan Province of China (Grant No. 2021JJ30535). |
Corresponding Authors:
Shao-Hua Xiang
E-mail: shxiang97@163.com
|
Cite this article:
Shao-Hua Xiang(向少华), Li-Jun Huang(黄利军), and Xian-Wu Mi(米贤武) Non-Gaussianity detection of single-mode rotationally symmetric quantum states via cumulant method 2024 Chin. Phys. B 33 050309
|
[1] Opatrný T, Kurizki G and Welsch D G 2000 Phys. Rev. A 61 032302 [2] Cochrane P T, Ralph T C and Milburn G J 2002 Phys. Rev. A 65 062306 [3] Olivares S, Paris M G A and Bonifacio R 2003 Phys. Rev. A 67 032314 [4] Dell’Anno F, Siena S De, Albano L and Illuminati F 2007 Phys. Rev. A 76 022301 [5] Huang P, He G, Fang J and Zeng G 2013 Phys. Rev. A 87 012317 [6] Cerf N J, Krüger O, Navez P, Werner R F and Wolf M M 2005 Phys. Rev. Lett. 95 070501 [7] Genoni M G, Paris M G A and Banaszek K 2007 Phys. Rev. A 76 042327 [8] Genoni M G and Paris M G A 2010 Phys. Rev. A 82 052341 [9] Ivan J S, Kumar M S and Simon R 2012 Quant. Inf. Proc. 11 853 [10] Ghiu I, Marian P and Marian T A 2013 Phys. Scr. T153 014028 [11] Genoni M G, Paris M G A and Banaszek K 2008 Phys. Rev. A 78 060303 [12] Park J, Lee J, Baek K and Nha H 2021 Phys. Rev. A 104 032415 [13] Fu S, Luo S and Zhang Y 2020 Phys. Rev. A 101 012125 [14] Olsen M K and Corney J F 2013 Phys. Rev. A 87 033839 [15] Corney J F and Olsen M K 2015 Phys. Rev. A 91 023824 [16] Xiang S H and Song K H 2015 Eur. Phys. J. D 69 260 [17] Xiang S H, Wen W, Zhao Y J and Song K H 2016 Phys. Rev. A 93 062119 [18] Xiang S H and Song K H 2018 Eur. Phys. J. D 72 185 [19] Xiang S H, Wen W, Zhao Y J and Song K H 2018 Phys. Rev. A 97 042303 [20] Xiang C, Zhao Y J and Xiang S H 2019 Phys. Scr. 94 115101 [21] Yamamoto Y and Kudo S 2017 JSIAM Lett. 9 9 [22] Juhasz T and Mazziotti D A 2006 J. Chem. Phys. 125 174105 [23] Skolnik J T and Mazziotti D A 2013 Phys. Rev. A 88 032517 [24] Yao Y, Dong G H, Xiao X and Sun C P 2016 Sci. Rep. 6 32010 [25] Vogel K and Risken H 1989 Phys. Rev. A 40 2847 [26] Xiang C, Li S S, Wen S S and Xiang S H 2022 Chin. Phys. B 31 030306 [27] Xiang S H, Li S S and Mi X W 2023 Chin. Phys. B 32 050309 [28] Agarwal G S and Tara K 1992 Phys. Rev. A 46 485 [29] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106 [30] Bužek V, Vidiella-Barranco A and Knight P L 1992 Phys. Rev. A 45 6570 [31] Xia Y J and Guo G C 1989 Phys. Lett. A 136 281 [32] Li F L, Li H R, Zhang J X and Zhu S Y 2002 Phys. Rev. A 66 024302 [33] Cheong Y W, Kim H and Lee H W 2004 Phys. Rev. A 70 032327 [34] Heid M and Lütkenhaus N 2007 Phys. Rev. A 76 022313 [35] Vogel W and Sperling J 2014 Phys. Rev. A 89 052302 [36] Jeong H and An N B 2006 Phys. Rev. A 74 022104 [37] Zhang Y and Luo S L2020 Phys. Scr. 95 035101 [38] Luis A and Monroy L 2017 Phys. Rev. A 96 063802 [39] Kitagawa M and Yamamoto Y 1986 Phys. Rev. A 34 3974 [40] Ould-Baba H, Robin V and Antoni J 2015 Linear Algebra Appl. 485 392 [41] Miki D, Matsumura A and Yamamoto K 2022 Phys. Rev. D 105 026011 [42] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299 [43] Park J, Lu Y, Lee J, Shen Y, Zhang K, Zhang S, Zubairy M S, Kim K and Nha H 2017 Proc. Natl. Acad. Sci. USA 114 891 [44] Roos C, Zeiger T, Rohde H, Nagerl H C, Eschner J, Leibfried D, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. Lett. 83 4713 [45] Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13 [46] Hacker B, Welte S, Daiss S, Shaukat A, Ritter S, Li L and Rempe G 2019 Nat. Photon. 13 110 [47] Kiesel T, Vogel W, Bellini M and Zavatta A 2011 Phys. Rev. A 83 03211 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|