Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050309    DOI: 10.1088/1674-1056/ad2506
GENERAL Prev   Next  

Non-Gaussianity detection of single-mode rotationally symmetric quantum states via cumulant method

Shao-Hua Xiang(向少华)†, Li-Jun Huang(黄利军), and Xian-Wu Mi(米贤武)
College of Physics, Electronics and Intelligent Manufacturing, Huaihua University, Huaihua 418008, China
Abstract  The non-Gaussianity of quantum states incarnates an important resource for improving the performance of continuous-variable quantum information protocols. We propose a novel criterion of non-Gaussianity for single-mode rotationally symmetric quantum states via the squared Frobenius norm of higher-order cumulant matrix for the quadrature distribution function. As an application, we study the non-Gaussianities of three classes of single-mode symmetric non-Gaussian states: a mixture of vacuum and Fock states, single-photon added thermal states, and even/odd Schrödinger cat states. It is shown that such a criterion is faithful and effective for revealing non-Gaussianity. We further extend this criterion to two cases of symmetric multi-mode non-Gaussian states and non-symmetric single-mode non-Gaussian states.
Keywords:  non-Gaussianity criterion      cumulant matrix      quadrature distribution  
Received:  09 December 2023      Revised:  21 January 2024      Accepted manuscript online:  02 February 2024
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the Natural Science Foundation of Hunan Province of China (Grant No. 2021JJ30535).
Corresponding Authors:  Shao-Hua Xiang     E-mail:  shxiang97@163.com

Cite this article: 

Shao-Hua Xiang(向少华), Li-Jun Huang(黄利军), and Xian-Wu Mi(米贤武) Non-Gaussianity detection of single-mode rotationally symmetric quantum states via cumulant method 2024 Chin. Phys. B 33 050309

[1] Opatrný T, Kurizki G and Welsch D G 2000 Phys. Rev. A 61 032302
[2] Cochrane P T, Ralph T C and Milburn G J 2002 Phys. Rev. A 65 062306
[3] Olivares S, Paris M G A and Bonifacio R 2003 Phys. Rev. A 67 032314
[4] Dell’Anno F, Siena S De, Albano L and Illuminati F 2007 Phys. Rev. A 76 022301
[5] Huang P, He G, Fang J and Zeng G 2013 Phys. Rev. A 87 012317
[6] Cerf N J, Krüger O, Navez P, Werner R F and Wolf M M 2005 Phys. Rev. Lett. 95 070501
[7] Genoni M G, Paris M G A and Banaszek K 2007 Phys. Rev. A 76 042327
[8] Genoni M G and Paris M G A 2010 Phys. Rev. A 82 052341
[9] Ivan J S, Kumar M S and Simon R 2012 Quant. Inf. Proc. 11 853
[10] Ghiu I, Marian P and Marian T A 2013 Phys. Scr. T153 014028
[11] Genoni M G, Paris M G A and Banaszek K 2008 Phys. Rev. A 78 060303
[12] Park J, Lee J, Baek K and Nha H 2021 Phys. Rev. A 104 032415
[13] Fu S, Luo S and Zhang Y 2020 Phys. Rev. A 101 012125
[14] Olsen M K and Corney J F 2013 Phys. Rev. A 87 033839
[15] Corney J F and Olsen M K 2015 Phys. Rev. A 91 023824
[16] Xiang S H and Song K H 2015 Eur. Phys. J. D 69 260
[17] Xiang S H, Wen W, Zhao Y J and Song K H 2016 Phys. Rev. A 93 062119
[18] Xiang S H and Song K H 2018 Eur. Phys. J. D 72 185
[19] Xiang S H, Wen W, Zhao Y J and Song K H 2018 Phys. Rev. A 97 042303
[20] Xiang C, Zhao Y J and Xiang S H 2019 Phys. Scr. 94 115101
[21] Yamamoto Y and Kudo S 2017 JSIAM Lett. 9 9
[22] Juhasz T and Mazziotti D A 2006 J. Chem. Phys. 125 174105
[23] Skolnik J T and Mazziotti D A 2013 Phys. Rev. A 88 032517
[24] Yao Y, Dong G H, Xiao X and Sun C P 2016 Sci. Rep. 6 32010
[25] Vogel K and Risken H 1989 Phys. Rev. A 40 2847
[26] Xiang C, Li S S, Wen S S and Xiang S H 2022 Chin. Phys. B 31 030306
[27] Xiang S H, Li S S and Mi X W 2023 Chin. Phys. B 32 050309
[28] Agarwal G S and Tara K 1992 Phys. Rev. A 46 485
[29] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106
[30] Bužek V, Vidiella-Barranco A and Knight P L 1992 Phys. Rev. A 45 6570
[31] Xia Y J and Guo G C 1989 Phys. Lett. A 136 281
[32] Li F L, Li H R, Zhang J X and Zhu S Y 2002 Phys. Rev. A 66 024302
[33] Cheong Y W, Kim H and Lee H W 2004 Phys. Rev. A 70 032327
[34] Heid M and Lütkenhaus N 2007 Phys. Rev. A 76 022313
[35] Vogel W and Sperling J 2014 Phys. Rev. A 89 052302
[36] Jeong H and An N B 2006 Phys. Rev. A 74 022104
[37] Zhang Y and Luo S L2020 Phys. Scr. 95 035101
[38] Luis A and Monroy L 2017 Phys. Rev. A 96 063802
[39] Kitagawa M and Yamamoto Y 1986 Phys. Rev. A 34 3974
[40] Ould-Baba H, Robin V and Antoni J 2015 Linear Algebra Appl. 485 392
[41] Miki D, Matsumura A and Yamamoto K 2022 Phys. Rev. D 105 026011
[42] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299
[43] Park J, Lu Y, Lee J, Shen Y, Zhang K, Zhang S, Zubairy M S, Kim K and Nha H 2017 Proc. Natl. Acad. Sci. USA 114 891
[44] Roos C, Zeiger T, Rohde H, Nagerl H C, Eschner J, Leibfried D, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. Lett. 83 4713
[45] Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13
[46] Hacker B, Welte S, Daiss S, Shaukat A, Ritter S, Li L and Rempe G 2019 Nat. Photon. 13 110
[47] Kiesel T, Vogel W, Bellini M and Zavatta A 2011 Phys. Rev. A 83 03211
[1] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙). Chin. Phys. B, 2024, 33(6): 060308.
[2] A quantum blind signature scheme based on dense coding for non-entangled states
Ke Xing(邢柯), Ai-Han Yin(殷爱菡),and Yong-Qi Xue(薛勇奇). Chin. Phys. B, 2024, 33(6): 060309.
[3] Effects of cross-Kerr coupling on transmission spectrum of double-cavity optomechanical system
Li-Teng Chen(陈立滕), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Jie-Hui Huang(黄接辉), Nan-Run Zhou(周南润), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2024, 33(6): 064204.
[4] Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis
Y. Lahlou, B. Maroufi, and M. Daoud. Chin. Phys. B, 2024, 33(5): 050303.
[5] An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure
Kai Wu(吴凯), Rigui Zhou(周日贵), and Jia Luo(罗佳). Chin. Phys. B, 2024, 33(5): 050305.
[6] General multi-attack detection for continuous-variable quantum key distribution with local local oscillator
Zhuo Kang(康茁), Wei-Qi Liu(刘维琪), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2024, 33(5): 050308.
[7] Quantum circuit-based proxy blind signatures: A novel approach and experimental evaluation on the IBM quantum cloud platform
Xiaoping Lou(娄小平), Huiru Zan(昝慧茹), and Xuejiao Xu(徐雪娇). Chin. Phys. B, 2024, 33(5): 050307.
[8] Ascertaining the influences of auxiliary qubits on the Einstein-Podolsky-Rosen steering and its directions
Ling-Ling Xing(邢玲玲), Huan Yang(杨欢), Gang Zhang(张刚), and Min Kong(孔敏). Chin. Phys. B, 2024, 33(5): 050304.
[9] Double quantum images encryption scheme based on chaotic system
She-Xiang Jiang(蒋社想), Yang Li(李杨), Jin Shi(石锦), and Ru Zhang(张茹). Chin. Phys. B, 2024, 33(4): 040306.
[10] Harmonic balance simulation of the influence of component uniformity and reliability on the performance of a Josephson traveling wave parametric amplifier
Yuzhen Zheng(郑煜臻), Kanglin Xiong(熊康林), Jiagui Feng(冯加贵), and Hui Yang(杨辉). Chin. Phys. B, 2024, 33(4): 040401.
[11] Integer multiple quantum image scaling based on NEQR and bicubic interpolation
Shuo Cai(蔡硕), Ri-Gui Zhou(周日贵), Jia Luo(罗佳), and Si-Zhe Chen(陈思哲). Chin. Phys. B, 2024, 33(4): 040302.
[12] Recurrent neural network decoding of rotated surface codes based on distributed strategy
Fan Li(李帆), Ao-Qing Li(李熬庆), Qi-Di Gan(甘启迪), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040307.
[13] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[14] Cryptanalysis of efficient semi-quantum secret sharing protocol using single particles
Gan Gao(高甘). Chin. Phys. B, 2024, 33(4): 040301.
[15] Dilation, discrimination and Uhlmann's theorem of link products of quantum channels
Qiang Lei(雷强), Liuheng Cao(操刘桁), Asutosh Kumar, and Junde Wu(武俊德). Chin. Phys. B, 2024, 33(3): 030304.
No Suggested Reading articles found!