Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 054205    DOI: 10.1088/1674-1056/ad1a95
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Electromagnetic pulses produced by a picosecond laser interacting with solid targets

Ai-Hui Niu(牛爱慧)1,†, Ning Kang(康宁)2,3,†,‡, Guo-Xiao Xu(许国潇)2,4, Jia-Jie Xie(谢佳节)1, Jian Teng(滕建)5, Hui-Ya Liu(刘会亚)2,3, Ming-Ying Sun(孙明营)2,3, and Ting-Shuai Li(李廷帅)1,§
1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China;
2 Key Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  A high-power laser ablating solid targets induces giant electromagnetic pulses (EMPs), which are intimately pertinent to laser parameters, such as energy and pulse width. In this study, we reveal the features of EMPs generated from a picosecond (ps) laser irradiating solid targets at the SG-II picosecond petawatt (PSPW) laser facility. The laser energy and pulse, as well as target material and thickness, show determinative effects on the EMPs' amplitude. More intense EMPs are detected behind targets compared to those at the other three positions, and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10 μ m to 20 μ m, which is suppressed when the laser pulse width is enlarged. The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.
Keywords:  laser      electromagnetic pulse      target      proton  
Received:  01 December 2023      Revised:  29 December 2023      Accepted manuscript online:  04 January 2024
PACS:  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  41.75.Jv (Laser-driven acceleration?)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25020205) and the program of Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics (Grant No. 6142A04220108).
Corresponding Authors:  Ning Kang,E-mail:kangning@siom.ac.cn;Ting-Shuai Li,E-mail:litingshuai@uestc.edu.cn     E-mail:  kangning@siom.ac.cn;litingshuai@uestc.edu.cn

Cite this article: 

Ai-Hui Niu(牛爱慧), Ning Kang(康宁), Guo-Xiao Xu(许国潇), Jia-Jie Xie(谢佳节), Jian Teng(滕建), Hui-Ya Liu(刘会亚), Ming-Ying Sun(孙明营), and Ting-Shuai Li(李廷帅) Electromagnetic pulses produced by a picosecond laser interacting with solid targets 2024 Chin. Phys. B 33 054205

[1] Marco M D, Krása J, Cikhardt J, Velyhan A, Pfeifer M, Dudžák R, Dostál J, Krouskỳ E, Limpouch J, Pisarczyk T, Kalinowska Z, Chodukowski T, Ullschmied J, Giuffrida L, Chatain D, Perin J P and Margarone D 2017 Phys. Plasmas 24 083103
[2] Consoli F, Tikhonchuk V T, Bardon M, Bradford P, Carroll D C, Cikhardt J, Cipriani M, Clarke R J, Cowan T E, Danson C N, Angelis R D, Marco M D, Dubois J L, Etchessahar B, Garcia A L, Hillier D L, Honsa A, Jiang W M, Kmetik V, Krasa J, Li Y T, Lubrano F, McKenna P, Metzkes-Ng J, Poye A, Prencipe I, Raczka P, Smith R A, Vrana R, Woolsey N C, Zemaityte E, Zhang Y H, Zhang Z, Zielbauer B and Neely D 2020 High Power Laser Sci. 8 e22
[3] Xia Y D, Zhang F, Cai H B, Zhou W M, Tian C, Zhang B, Liu D X, Yi T, Xu Y L, Wang F, Li T S and Zhu S P 2020 Matter Radiat. Extremes 5 017401
[4] Brown C G, Clancy T J, Eder D C, Ferguson W and Throop A L 2013 The European physical Journal Conferences 59 08012
[5] Rączka P, Cikhardt J, Pfeifer M, Krasa J, Krupka M, Burian T, Krus M, Pisarczyk T, Dostal J and Dudžák R and Badziak J 2021 Plasma Phys. Contr. F. 63 085015
[6] Bradford P, Woolsey N C, Scott G G, Liao G, Liu H, Zhang Y, Zhu B, Armstrong C, Astbury S, Brenner C, Brummitt P, Consoli F, East I, Gray R, Haddock D, Huggard P, Jones P J R, Montgomery E, Musgrave I, Oliveira P, Rusby D R, Spindloe C, Summers B, Zemaityte E, Zhang Z, Li Y, McKenna P and Neely D 2018 High Power Laser Sci. 6 e21
[7] He Q Y, Deng Z G, Meng L B, Zhang Z M, Cui B, Qi W, Yang L, Liu H J, Fan W, Wang C K, Yi T, Gu Y, Lin C, Consoli F, Zhou W M and Li T S 2022 Nucl. Fusion 62 066006
[8] He Q Y, Kang N, Ren L, Tian C, Wang C K, Zhang Z M, Liu D X, Yang L, Liu H Y, Sun M Y, Zhu B Q, Zhou W M and Li T S 2021 Plasma Sci. Technol 23 115202
[9] Duchateau G, Yamada A and Yabana K 2022 Phys. Rev B 105 165128
[10] Kugland N L, Aurand B, Brown C G, Constantin C G, Everson E T, Glenzer S H, Schaeffer D B, Tauschwitz A and Niemann C 2012 Appl. Phys. Lett. 101 024102
[11] Yang Y, Guo X D, Li Z H, He Q Y, Xiong G, Li H, Yu B, Wang C K, Yang J M, Yi T, Wang F and Li T S 2022 IEEE T. Nucl. Sci. 69 2027
[12] Dubois J L, Lubrano-Lavaderci F, Raffestin D, Ribolzi J, Gazave J, Fontaine A C L, D'Humiéres E, Hulin S, Nicolaï P, Poyé A and Tikhonchuk V T 2014 Phys. Rev E 89 013102
[13] Xia Y D, Zhang F, Cai H B, Zhou W M, Tian C, Zhang B, Liu D X, Yi T, Xu Y L, Wang F, Li T S and Zhu S P 2017 Matter Radiat. Extrem. 5 017401
[14] Minenna D F G, Poyé A, Bradford P, Woolsey N and Tikhonchuk V T 2020 Phys. Plasmas 27 063102
[15] Qi R, Zhou C L, Zhang D D, Song L W, Yang X J, Gui J Y, Leng Y X, Tian Y and Li R X 2022 Appl. Sci 12 6059
[16] Side D D, Caricato A P, Krása J and Nassisi V 2018 Appl. Phys. A-Mater 124 138
[17] Consoli F, Angelis R D, Robinson T S, Glitrap S, Hicks G S, Ditter E J, Ettlinger O C, Najmudin Z, Notley M and Smith R A 2019 Sci. Rep. 9 8551
[18] Xu Y L, Li D Y, Xia Y D, Zhang S Y, Wu M J, Yang T, Zhu J G, Cheng H, Wang C K, Lin C, Li T S and Yang X Q 2022 Chin. Phys. B 31 025205
[19] Yang Y M, Yi T, Yang M, Wang C K and Li T S 2018 Laser Phys. 29 016003
[20] Liao Q, Wu M J, Gong Z, Geng Y X, Xu X H, Li D Y, Shou Y R, Zhu J G, Li C C, Yang M, Li T S, Lu H Y, Ma W J, Zhao Y Y, Lin C and Yan X Q 2018 Phys. Plasmas 25 063109
[21] Poyé A, Hulin S, Bailly-Grandvaux M, Dubois J L, Ribolzi J, Raffestin D, Bardon M, Lubrano-Lavaderci F, D'Humiéres E, Santos J J, Nicolaï P and Tikhonchuk V 2015 Phys. Rev E 91 043106
[22] Geng Y X, Wu D, Yu W, Sheng Z M, Fritzsche S, Liao Q, Wu M J, Xu X H, Li D Y, Ma W J, Lu H Y, Zhao Y Y, He X T, Chen J E, Lin C and Yan X Q 2020 Matter Radiat. Extrem 5 064402
[23] Li S P, Wang X C, Chen G J and Wang Z K 2023 Micromachines-Basel 14 119
[24] Kuri D, Nilakshi D and Kartik P 2017 Appl. Phys. B 123 201
[25] Delion D S and Dumitrescu A 2021 Phys. Rev. C 103 054325
[26] Budaca R and Budac A I 2017 Eur. Phys. J. A 53 160
[1] Elliptically polarized high-order harmonic generation of Ar atom in an intense laser field
Jie Hu(胡杰), Yi-Chen Wang(王一琛), Qiu-Shuang Jing(景秋霜), Wei Jiang(姜威), Ge-Wen Wang(王革文), Yi-Wen Zhao(赵逸文), Bo Xiao(肖礴), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2024, 33(5): 054208.
[2] Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin—Puplett interferometer polarimeter
Ya-Peng Zhang(张雅芃), Jia-Wen Yao(姚嘉文), Zheng-Dong Liu(刘正东), Zuo-Lin Ma(马作霖), and Jia-Yong Zhong(仲佳勇). Chin. Phys. B, 2024, 33(4): 045206.
[3] Strong field ionization of molecules on the surface of nanosystems
Qiwen Qu(曲棋文), Fenghao Sun(孙烽豪), Jiawei Wang(王佳伟), Jian Gao(高健), Hui Li(李辉), and Jian Wu(吴健). Chin. Phys. B, 2024, 33(4): 047803.
[4] Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
Yayong Wu(吴亚勇), Xinwei Wang(王欣伟), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2024, 33(4): 040205.
[5] Polarization control of above-threshold ionization spectrum in elliptically polarized two-color laser fields
Fa-Cheng Jin(金发成), Hui-Hui Yang(杨慧慧), Xiao-Hong Song(宋晓红), Fei Li(李飞), Ling-Ling Du(杜玲玲), Hong-Jie Xue(薛红杰), Li-Min Wei(魏丽敏), Yue Bai(白悦), Hao-Xiang Liu(刘浩翔), Bing-Bing Wang(王兵兵), and Wei-Feng Yang(杨玮枫). Chin. Phys. B, 2024, 33(4): 043301.
[6] Estimating the yield stress of soft materials via laser-induced breakdown spectroscopy
Shuhang Gong(龚书航), Yaju Li(李亚举), Dongbin Qian(钱东斌), Jinrui Ye(叶晋瑞), Kou Zhao(赵扣), Qiang Zeng(曾强), Liangwen Chen(陈良文), Shaofeng Zhang(张少锋), Lei Yang(杨磊), and Xinwen Ma(马新文). Chin. Phys. B, 2024, 33(3): 034211.
[7] On the generation of high-quality Nyquist pulses in mode-locked fiber lasers
Yuxuan Ren(任俞宣), Jinman Ge(葛锦蔓), Xiaojun Li(李小军), Junsong Peng(彭俊松), and Heping Zeng(曾和平). Chin. Phys. B, 2024, 33(3): 034210.
[8] Residual stress modeling of mitigated fused silica damage sites with CO2 laser annealing
Chuanchao Zhang(张传超), Wei Liao(廖威), Lijuan Zhang(张丽娟), Xiaolong Jiang(蒋晓龙), Zhenhua Fang(方振华), and Xiaodong Jiang(蒋晓东). Chin. Phys. B, 2024, 33(3): 036101.
[9] Theoretical investigations of population trapping phenomena in atomic four-color, three-step photoionization scheme
Xiao-Yong Lu(卢肖勇) and Ya-Peng Sun(孙亚鹏). Chin. Phys. B, 2024, 33(3): 033202.
[10] On-chip ultrafast stackable dielectric laser positron accelerator
Bin Sun(孙斌), Yangfan He(何阳帆), Chenhao Pan(潘晨浩), Sijie Fan(樊思劼), Du Wang(王度), Shaoyi Wang(王少义), and Zongqing Zhao(赵宗清). Chin. Phys. B, 2024, 33(3): 034101.
[11] In situ calibrated angle between the quantization axis and the propagating direction of the light field for trapping neutral atoms
Rui-Jun Guo(郭瑞军), Xiao-Dong He(何晓东), Cheng Sheng(盛诚), Kun-Peng Wang(王坤鹏), Peng Xu(许鹏), Min Liu(刘敏), Jin Wang(王谨), Xiao-Hong Sun(孙晓红), Yong Zeng(曾勇), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2024, 33(2): 023701.
[12] Effect of sample temperature on femtosecond laser ablation of copper
Wei-Jie Dang(党伟杰), Yu-Tong Chen(陈雨桐), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2024, 33(2): 024207.
[13] Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth
Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(2): 024206.
[14] Gigahertz frequency hopping in an optical phase-locked loop for Raman lasers
Dekai Mao(毛德凯), Hongmian Shui(税鸿冕), Guoling Yin(殷国玲), Peng Peng(彭鹏), Chunwei Wang(王春唯), and Xiaoji Zhou(周小计). Chin. Phys. B, 2024, 33(2): 024209.
[15] Suppression of stimulated Brillouin and Raman scatterings using an alternating frequency laser and transverse magnetic fields
Rui-Jin Cheng(程瑞锦), Xiao-Xun Li(李晓旬), Qing Wang(王清), De-Ji Liu(刘德基), Zhuo-Ming Huang(黄卓明), Shuai-Yu Lv(吕帅宇), Yuan-Zhi Zhou(周远志), Shu-Tong Zhang(张舒童), Xue-Ming Li(李雪铭), Zu-Jie Chen(陈祖杰), Qiang Wang(王强), Zhan-Jun Liu(刘占军), Li-Hua Cao(曹莉华), and Chun-Yang Zheng(郑春阳). Chin. Phys. B, 2024, 33(1): 015206.
No Suggested Reading articles found!