Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 043401    DOI: 10.1088/1674-1056/ad20dd
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Absolute partial and total ionization cross sections of carbon monoxide with electron collision from 350 eV to 8000 eV

Taj Wali Khan, Weizhe Huang(黄伟哲), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军)
Hefei National Research Center of Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV. The product ions (CO+, C+, O+, CO2+, C2+, and O2+) are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels (C+ + O+ and C2+ + O+) are identified. The absolute cross sections for producing individual ions and their total, as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO+ to that of Ar+ from CO—Ar mixture target with a fixed 1:1 ratio. The overall errors are evaluated by considering various kinds of uncertainties. A comprehensive comparison is made with the available data, which shows a good agreement with each other over the energy ranges that are overlapped. This work presents new cross-section data with electron energies above 1000 eV.
Keywords:  electron impact      ionization cross sections      carbon monoxide      ion imaging mass spectrometer  
Received:  25 December 2023      Revised:  12 January 2024      Accepted manuscript online:  22 January 2024
PACS:  34.50.Gb (Electronic excitation and ionization of molecules)  
  34.80.Gs (Molecular excitation and ionization)  
  34.80.Ht (Dissociation and dissociative attachment)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602502), the National Natural Science Foundation of China (Grant No. 12127804), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB34000000).
Corresponding Authors:  Xu Shan     E-mail:  xshan@ustc.edu.cn

Cite this article: 

Taj Wali Khan, Weizhe Huang(黄伟哲), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军) Absolute partial and total ionization cross sections of carbon monoxide with electron collision from 350 eV to 8000 eV 2024 Chin. Phys. B 33 043401

[1] Campbell L and Brunger M J 2009 Geophys. Res. Lett. 36 L03101
[2] Campbell L, Allan M and Brunger M J 2011 J. Geophys. Res. 116 A09321
[3] Artamonov A, Mironova I, Kovaltsov G, Mishev A, Plotnikov E and Konstantinova N 2017 Adv. Space Res. 59 2295
[4] Shull J M and Van Steenberg M 1982 Astrophys. J. Suppl. Ser. 48 95
[5] Shen Z J, Wang E L, Gong M M, Shan X and Chen X J 2018 J. Electron Spectrosc. Relat. Phenom. 225 42
[6] Krasnopolsky V A 2015 Icarus. 253 149
[7] Olsen K S, Lefévre F, Montmessin F, Fedorova A A, Trokhimovskiy A, Baggio L, Korablev O, Alday J, Wilson C F, Forget F, Belyaev D A, Patrakeev A, Grigoriev A V and shakun A 2021 Nat. Geosci. 14 67
[8] Smith M D, Daerden F, Neary L and Khayat A 2018 Icarus. 301 117
[9] Ehrenfreund P and Charnley S B 2000 Annu. Rev. Astron. Astrophys. 38 427
[10] Lillis R J and Fang X 2015 J. Geophys. Res:Planets. 120 1332
[11] Bougher S W, Belly P L, Combi M, Fox J L, Mueller-Wodarg I, Ridley A and Roble R G 2008 Space Sci. Rev. 139 107
[12] Fang X, Randall C E, Lummerzheim D, Wang W, Lu G, Solomon S C and Frahm R A 2010 Geophys. Res. Lett. 37 L22106
[13] Lillis R J, Fillingim M O, Peticolas L M, Brain D A, Lin R P and Bougher S W 2009 J. Geophys. Res. Planets. 114 E11009
[14] Lillis R J, Mitchell D L, Steckiewicz M, Brain D, Xu S, Weber T, Halekas J, Connerney J, Espley J, Benna M, Elrod M, Thiemann E and Eparvier F 2018 J. Geophys. Res. Space Phys. 123 4349
[15] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[16] Mirić J, Bošnjaković D, Simonović I, Petrović Z Lj and Dujko S 2016 Plasma Sources Sci. Technol. 25 065010
[17] Rabie M and Franck C M 2016 Comput. Phys. Commun. 203 268
[18] Capitelli M, Colonna G, Ammando G D and Pietanza L D 2017 Plasma Sources Sci. Technol. 26 055009
[19] Hösl A, Pachin J, Egüz E, Chachereau A and Franck C M 2020 J. Phys. D:Appl. Phys. 53 135202
[20] Pietanza L D, Colonna G and Capitelli M 2017 Plasma Sources Sci. Technol. 26 125007
[21] Tate J T and Smith P T 1932 Phys. Rev. 39 270
[22] Schulz G J 1962 Phys. Rev. 128 178
[23] Asundi R K, Craggs J D and Kurepa M V 1963 Proc. Phys. Soc. 82 967
[24] Srinivasan V and Rees J A 1967 Brit. J. Appl. Phys. 18 59
[25] Rapp D and Englander-Golden P 1965 J. Chem. Phys. 43 1464
[26] Hille E and Mark T D 1978 J. Chem. Phys. 69 4600
[27] Freund R S, Wetzel R C and Schul R J 1990 Phys. Rev. A 41 5861
[28] Adamczyk B, Bederski K and Wojcik L 1988 Biomed. Environ. Mass Spectrom. 16 41
[29] Tian C and Vidal C R 1998 J. Phys. B:At. Mol. Opt. Phys. 31 895
[30] Tian C and Vidal C R 1999 Phys. Rev. A 59 1955
[31] Gavin J, Ortiz M and Campos J 2002 Int. J. Mass Spectrom. 219 351
[32] Orient O J and Srivastava S K 1987 J. Phys. B:At. Mol. Phys. 20 3923
[33] Mangan M A, Lindsay B G and Stebbings R F 2000 J. Phys. B:At., Mol. Opt. Phys. 33 3225
[34] Chung Y S 2002 J. Korean Phys. Soc. 41 682
[35] Jain D K and Khare S P 1976 J. Phys. B:At. Mol. Phys. 9 1429
[36] Hwang W, Kim Y K and Rudd M E 1996 J. Chem. Phys. 104 2956
[37] Zhong L, Wu B, Zheng S and Gu Q 2021 Phys. Plasmas 28 083505
[38] Itikawa Y 2015 J. Phys. Chem. Ref. Data 44 013105
[39] Wang E L, Tang Y G, Shen Z J, Gong M M, Shan X and Chen X J 2013 Rev. Sci. Instrum. 84 123110
[40] Straub H, Renault P, Lindsay B, Smith K and Stebbings R 1995 Phys. Rev. A 52 1115
[41] Nagy P, Skutlartz A and Schmidt V 1980 J. Phys. B:At. Mol. Phys. 13 1249
[42] Schram B, De Heer F, Van der Wiel M and Kistemaker J 1965 Physica 31 94
[43] Wiley W and McLaren I H 1955 Rev. Sci. Instrum. 26 1150
[44] Wang E L, Shen Z J, Yang H J, Tang Y G, Shan X and Chen X J 2014 Chin. Phys. B 23 113404
[45] Krems M, Zirbel J, Thomason M and DuBois R D 2005 Rev. Sci. Instrum. 76 093305
[46] Matoba S, Ishikawa G, Moriya S, Takahashi K, Koizumi T and Shiromaru H 2014 Rev. Sci. Instrum. 85 086105
[1] Corrigendum to "Absolute partial and total ionization cross sections of carbon monoxide with electron collision from 350eV to 8000eV"
Taj Wali Khan, Weizhe Huang(黄伟哲), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军). Chin. Phys. B, 2024, 33(5): 059901.
[2] An effective method to calculate the electron impact excitation cross sections of helium from ground state to a final channel in the whole energy region
Rui Sun(孙瑞), De-Ling Zeng(曾德灵), Rui Jin(金锐), Xiao-Ying Han(韩小英), Xiang Gao(高翔), and Jia-Ming Li(李家明). Chin. Phys. B, 2023, 32(11): 113401.
[3] Line positions, intensities, and Einstein A coefficients for 3-0 band of 12C16O: A spectroscopy learning method
Zhi-Xiang Fan(范志祥), Zhi-Zhang Ni(倪志樟), Jie-Jie He(贺洁洁), Yi-Fan Wang(王一凡), Qun-Chao Fan(樊群超), Jia Fu(付佳), Yong-Gen Xu(徐勇根), Hui-Dong Li(李会东), Jie Ma(马杰), and Feng Xie(谢锋). Chin. Phys. B, 2021, 30(12): 123301.
[4] Density functional theory investigation of carbon monoxide adsorption on the kaolinite (001) surface
Jian Zhao(赵健), Man-Chao He(何满潮), Xiang-Xing Hu(胡祥星), Wei Gao(高炜). Chin. Phys. B, 2017, 26(7): 079101.
[5] Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII
R T Nazir, M A Bari, M Bilal, S Sardar, M H Nasim, M Salahuddin. Chin. Phys. B, 2017, 26(2): 023102.
[6] Production of projectile and target K-vacancy in near-symmetric collisions of 60-100 MeV Cu9+ ions with thin Zn target
Yipan Guo(郭义盼), Zhihu Yang(杨治虎), Shubin Du(杜树斌), Hongwei Chang(常宏伟), Qingliang Xia(夏清良), Qiumei Xu(徐秋梅). Chin. Phys. B, 2016, 25(3): 033401.
[7] Electron impact excitation of helium atom
Han Xiao-Ying (韩小英), Zeng De-Ling (曾德灵), Gao Xiang (高翔), Li Jia-Ming (李家明). Chin. Phys. B, 2015, 24(8): 083103.
[8] Resonance enhanced electron impact excitation for P-like Cu XV
Li Shuang (李双), Yan Jun (颜君), Li Chuan-Ying (李传莹), Huang Min (黄敏), Chen Chong-Yang (陈重阳). Chin. Phys. B, 2015, 24(11): 113401.
[9] Electron impact excitation of Ni-like gold studied by Dirac R-matrix method
Fan Quan-Ping (范全平), Wang Wen-Hui (汪文慧), Hu Feng (胡峰), Cao Lei-Feng (曹磊峰), Zhang Qiang-Qiang (张强强), Liu Yu-Wei (刘钰薇), Jiang Gang (蒋刚). Chin. Phys. B, 2014, 23(11): 113401.
[10] Mαβ X-ray production cross sections of Pb and Bi by 9–40 keV electron impact
Wu Ying (吴英), Wang Guan-Ying (王冠鹰), Mu Qiang (穆强), Zhao Qiang (赵强). Chin. Phys. B, 2014, 23(1): 013401.
[11] Momentum-space calculation of electron-CO elastic collision
Wang Yuan-Cheng (王远成), Ma Jia (马佳), Zhou Ya-Jun (周雅君). Chin. Phys. B, 2013, 22(2): 023402.
[12] Positron scattering and ionization of neon atoms —— theoretical investigations
Harshit N. Kothari and K. N. Joshipura. Chin. Phys. B, 2010, 19(10): 103402.
[13] Calculated cross sections for the single ionization of atoms (N, Cu, As, Se, Sn, Sb, Te, I, Pb) by electron impact
Hou Yu-Jun(侯育君), Cheng Xin-Lu(程新路), and Chen Heng-Jie(陈恒杰). Chin. Phys. B, 2009, 18(2): 553-557.
[14] Theoretical simulations of emission spectra of Fe7+ and Fe8+
Zeng Jiao-Long (曾交龙), Wang Yan-Gui (王雁桂), Zhao Gang (赵刚), Yuan Jian-Min (袁建民). Chin. Phys. B, 2006, 15(7): 1502-1510.
[15] Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532nm
Niu Dong-Mei (牛冬梅), Li Hai-Yang (李海洋), Luo Xiao-Lin (罗晓琳), Liang Feng (梁峰), Cheng Shuang (程爽), Li An-Lin (李安林). Chin. Phys. B, 2006, 15(7): 1511-1516.
No Suggested Reading articles found!