|
|
Absolute partial and total ionization cross sections of carbon monoxide with electron collision from 350 eV to 8000 eV |
Taj Wali Khan, Weizhe Huang(黄伟哲), Enliang Wang(王恩亮), Xu Shan(单旭)†, and Xiangjun Chen(陈向军) |
Hefei National Research Center of Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV. The product ions (CO+, C+, O+, CO2+, C2+, and O2+) are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels (C+ + O+ and C2+ + O+) are identified. The absolute cross sections for producing individual ions and their total, as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO+ to that of Ar+ from CO—Ar mixture target with a fixed 1:1 ratio. The overall errors are evaluated by considering various kinds of uncertainties. A comprehensive comparison is made with the available data, which shows a good agreement with each other over the energy ranges that are overlapped. This work presents new cross-section data with electron energies above 1000 eV.
|
Received: 25 December 2023
Revised: 12 January 2024
Accepted manuscript online: 22 January 2024
|
PACS:
|
34.50.Gb
|
(Electronic excitation and ionization of molecules)
|
|
34.80.Gs
|
(Molecular excitation and ionization)
|
|
34.80.Ht
|
(Dissociation and dissociative attachment)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602502), the National Natural Science Foundation of China (Grant No. 12127804), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB34000000). |
Corresponding Authors:
Xu Shan
E-mail: xshan@ustc.edu.cn
|
Cite this article:
Taj Wali Khan, Weizhe Huang(黄伟哲), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军) Absolute partial and total ionization cross sections of carbon monoxide with electron collision from 350 eV to 8000 eV 2024 Chin. Phys. B 33 043401
|
[1] Campbell L and Brunger M J 2009 Geophys. Res. Lett. 36 L03101 [2] Campbell L, Allan M and Brunger M J 2011 J. Geophys. Res. 116 A09321 [3] Artamonov A, Mironova I, Kovaltsov G, Mishev A, Plotnikov E and Konstantinova N 2017 Adv. Space Res. 59 2295 [4] Shull J M and Van Steenberg M 1982 Astrophys. J. Suppl. Ser. 48 95 [5] Shen Z J, Wang E L, Gong M M, Shan X and Chen X J 2018 J. Electron Spectrosc. Relat. Phenom. 225 42 [6] Krasnopolsky V A 2015 Icarus. 253 149 [7] Olsen K S, Lefévre F, Montmessin F, Fedorova A A, Trokhimovskiy A, Baggio L, Korablev O, Alday J, Wilson C F, Forget F, Belyaev D A, Patrakeev A, Grigoriev A V and shakun A 2021 Nat. Geosci. 14 67 [8] Smith M D, Daerden F, Neary L and Khayat A 2018 Icarus. 301 117 [9] Ehrenfreund P and Charnley S B 2000 Annu. Rev. Astron. Astrophys. 38 427 [10] Lillis R J and Fang X 2015 J. Geophys. Res:Planets. 120 1332 [11] Bougher S W, Belly P L, Combi M, Fox J L, Mueller-Wodarg I, Ridley A and Roble R G 2008 Space Sci. Rev. 139 107 [12] Fang X, Randall C E, Lummerzheim D, Wang W, Lu G, Solomon S C and Frahm R A 2010 Geophys. Res. Lett. 37 L22106 [13] Lillis R J, Fillingim M O, Peticolas L M, Brain D A, Lin R P and Bougher S W 2009 J. Geophys. Res. Planets. 114 E11009 [14] Lillis R J, Mitchell D L, Steckiewicz M, Brain D, Xu S, Weber T, Halekas J, Connerney J, Espley J, Benna M, Elrod M, Thiemann E and Eparvier F 2018 J. Geophys. Res. Space Phys. 123 4349 [15] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722 [16] Mirić J, Bošnjaković D, Simonović I, Petrović Z Lj and Dujko S 2016 Plasma Sources Sci. Technol. 25 065010 [17] Rabie M and Franck C M 2016 Comput. Phys. Commun. 203 268 [18] Capitelli M, Colonna G, Ammando G D and Pietanza L D 2017 Plasma Sources Sci. Technol. 26 055009 [19] Hösl A, Pachin J, Egüz E, Chachereau A and Franck C M 2020 J. Phys. D:Appl. Phys. 53 135202 [20] Pietanza L D, Colonna G and Capitelli M 2017 Plasma Sources Sci. Technol. 26 125007 [21] Tate J T and Smith P T 1932 Phys. Rev. 39 270 [22] Schulz G J 1962 Phys. Rev. 128 178 [23] Asundi R K, Craggs J D and Kurepa M V 1963 Proc. Phys. Soc. 82 967 [24] Srinivasan V and Rees J A 1967 Brit. J. Appl. Phys. 18 59 [25] Rapp D and Englander-Golden P 1965 J. Chem. Phys. 43 1464 [26] Hille E and Mark T D 1978 J. Chem. Phys. 69 4600 [27] Freund R S, Wetzel R C and Schul R J 1990 Phys. Rev. A 41 5861 [28] Adamczyk B, Bederski K and Wojcik L 1988 Biomed. Environ. Mass Spectrom. 16 41 [29] Tian C and Vidal C R 1998 J. Phys. B:At. Mol. Opt. Phys. 31 895 [30] Tian C and Vidal C R 1999 Phys. Rev. A 59 1955 [31] Gavin J, Ortiz M and Campos J 2002 Int. J. Mass Spectrom. 219 351 [32] Orient O J and Srivastava S K 1987 J. Phys. B:At. Mol. Phys. 20 3923 [33] Mangan M A, Lindsay B G and Stebbings R F 2000 J. Phys. B:At., Mol. Opt. Phys. 33 3225 [34] Chung Y S 2002 J. Korean Phys. Soc. 41 682 [35] Jain D K and Khare S P 1976 J. Phys. B:At. Mol. Phys. 9 1429 [36] Hwang W, Kim Y K and Rudd M E 1996 J. Chem. Phys. 104 2956 [37] Zhong L, Wu B, Zheng S and Gu Q 2021 Phys. Plasmas 28 083505 [38] Itikawa Y 2015 J. Phys. Chem. Ref. Data 44 013105 [39] Wang E L, Tang Y G, Shen Z J, Gong M M, Shan X and Chen X J 2013 Rev. Sci. Instrum. 84 123110 [40] Straub H, Renault P, Lindsay B, Smith K and Stebbings R 1995 Phys. Rev. A 52 1115 [41] Nagy P, Skutlartz A and Schmidt V 1980 J. Phys. B:At. Mol. Phys. 13 1249 [42] Schram B, De Heer F, Van der Wiel M and Kistemaker J 1965 Physica 31 94 [43] Wiley W and McLaren I H 1955 Rev. Sci. Instrum. 26 1150 [44] Wang E L, Shen Z J, Yang H J, Tang Y G, Shan X and Chen X J 2014 Chin. Phys. B 23 113404 [45] Krems M, Zirbel J, Thomason M and DuBois R D 2005 Rev. Sci. Instrum. 76 093305 [46] Matoba S, Ishikawa G, Moriya S, Takahashi K, Koizumi T and Shiromaru H 2014 Rev. Sci. Instrum. 85 086105 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|