|
|
Mαβ X-ray production cross sections of Pb and Bi by 9–40 keV electron impact |
Wu Ying (吴英)a b, Wang Guan-Ying (王冠鹰)a, Mu Qiang (穆强)a, Zhao Qiang (赵强)a |
a School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China; b Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China |
|
|
Abstract The experimental data of Mαβ X-ray production cross sections for Pb and Bi by 9–40 keV electron impact have been given. Thin films with thick carbon substrates are used in the experiment. The effects of target structure on the Mαβ X-ray production cross sections are corrected by using the Monte Carlo method. The corrected experimental data are compared with calculated cross sections in terms of the distorted-wave Born approximation (DWBA) theory. The measured Mαβ X-ray production cross sections for Pb and Bi are lower than the DWBA calculations. The atomic relaxation parameters used in comparing the DWBA values with experimental results affect the degree of difference.
|
Received: 08 January 2013
Revised: 04 July 2013
Accepted manuscript online:
|
PACS:
|
34.80.Dp
|
(Atomic excitation and ionization)
|
|
02.70.Uu
|
(Applications of Monte Carlo methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11275071). |
Corresponding Authors:
Wu Ying
E-mail: w_y@ncepu.edu.cn
|
Cite this article:
Wu Ying (吴英), Wang Guan-Ying (王冠鹰), Mu Qiang (穆强), Zhao Qiang (赵强) Mαβ X-ray production cross sections of Pb and Bi by 9–40 keV electron impact 2014 Chin. Phys. B 23 013401
|
[1] |
Powell C J 1976 Rev. Mod. Phys. 48 33
|
[2] |
Powell C J 1985 in Electron Impact Ionization (Ed. T. D. Märk and G. H. Dunn) (New York: Springer-Verlag) pp. 198–231
|
[3] |
Nagashima Y, Saito F, Itoh Y, Goto A and Hyodo T 2004 Phys. Rev. Lett. 92 223201
|
[4] |
Segui S, Dingfelder M and Salvat F 2003 Phys. Rev. A 67 062710
|
[5] |
Colgan J, Fontes C J and Zhang H L 2006 Phys. Rev. A 73 062711
|
[6] |
Salzmann D, Reich Ch, Uschmann I, Förster E and Gibbon P 2002 Phys. Rev. E 65 036402
|
[7] |
Riley D, Angulo-Gareta J J, Khattak F Y, Lamb M J, Foster P S, Divall E J, Hooker C J, Langley A J, Clarke R J and Neely D 2005 Phys. Rev. E 71 016406
|
[8] |
Köster P, Akli K, Batani D, Baton S, Evans R G, Giulietti A, Giulietti D, Gizzi L A, Green J S, Koenig M, Labate L, Morace A, Norreys P, Perez F, Waugh J, Woolsey N and Lancaster K L 2009 Plasma Phys. Contr. Fusion 51 014007
|
[9] |
Hippler R 1990 Phys. Lett. A 144 81
|
[10] |
Khare S P and Wadehra J M 1996 Can. J. Phys. 74 376
|
[11] |
Wu Z W, Yang D L, Luo X B, He F Q, Peng X F and Luo Z M 2003 Chin. Phys. Lett. 20 1485
|
[12] |
Gou C J, Wu Z W, Peng X F, He F Q and Luo Z M 2005 Chin. Phys. Lett. 22 2538
|
[13] |
Wu Y, An Z, Duan Y M, Liu M T and Ouyang X P 2012 Can. J. Phys. 90 125
|
[14] |
Zhu J J, An Z, Liu M T and Tian L X 2009 Phys. Rev. A 79 052710
|
[15] |
Wu Y, An Z, Duan Y M and Liu M T 2010 Nucl. Instrum. Methods Phys. Res. B 268 2820
|
[16] |
Wu Y, An Z, Duan Y M, Liu M T and Wu J 2011 Nucl. Instrum. Methods Phys. Res. B 269 117
|
[17] |
Wu Y, An Z, Duan Y M and Liu M T 2010 J. Phys. B 43 135206
|
[18] |
Wu Y, An Z, Duan Y M and Liu M T 2010 Nucl. Instrum. Methods Phys. Res. B 268 2473
|
[19] |
Merlet C, Llovet X and Salvat F 2008 Phys. Rev. A 78 022704
|
[20] |
Moy A, Merlet C, Llovet X and Dugne O 2013 J. Phys. B 46 115202
|
[21] |
Perkins S T, Cullen D E, Chen M H, Hubbell J H, Rath J and Scofield J 1991 Report UCRL-50400 30 (Livermore, CA: Lawrence Livermore National Laboratory)
|
[22] |
Llovet X, Merlet C and Salvat F 2000 J. Phys. B 33 3761
|
[23] |
Wu Y, An Z, Duan Y M, Liu M T and Tang C H 2007 J. Phys. B 40 735
|
[24] |
An Z, Liu M T, Fu Y C, Luo Z M, Tang C H, Li C M, Zhang B H and Tang Y J 2003 Nucl. Instrum. Methods Phys. Res. B 207 268
|
[25] |
An Z and Liu M T 2002 Nucl. Instrum. Methods Phys. Res. B 194 513
|
[26] |
Salvat F, Fernández-Varea J M and Sempau J 2005 PENELOPE: A Code System for Monte Carlo Simulation of Electron and Photon Transport
|
[27] |
Wu Y and An Z 2006 Nucl. Phys. Rev. 23 62 (in Chinese)
|
[28] |
Bote D, Salvat F, Jablonski A and Powell C J 2009 At. Data Nucl. Data Tables 95 871
|
[29] |
Chanhan Y and Puri S 2008 Atomic Data and Nuclear Tables 94 38
|
[30] |
Chauhan Y, Kumar A and Puri S 2009 Atomic Data and Nuclear Tables 95 475
|
[31] |
Khan M R and Karimi M 1980 X-ray Spectrom 9 32
|
[32] |
Papp T, Campbell J L and Raman S 1993 J. Phys. B 26 4007
|
[33] |
Puri S, Mehta D, Singh N and Trehan P N 1996 Phys. Rev. A 54 617
|
[34] |
Puri S 2007 Atomic Data and Nuclear Tables 93 730
|
[35] |
Campos C S, Vasconcellos M A Z, Llovet X and Salvat F 2002 Phys. Rev. A 66 012719
|
[36] |
Shevelko V P, Solomon A M and Vukstich V S 1991 Phys. Scr. 43 158
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|