|
|
Polarization control of above-threshold ionization spectrum in elliptically polarized two-color laser fields |
Fa-Cheng Jin(金发成)1,5,†, Hui-Hui Yang(杨慧慧)1, Xiao-Hong Song(宋晓红)2,3, Fei Li(李飞)5, Ling-Ling Du(杜玲玲)5, Hong-Jie Xue(薛红杰)1, Li-Min Wei(魏丽敏)1, Yue Bai(白悦)1, Hao-Xiang Liu(刘浩翔)1, Bing-Bing Wang(王兵兵)4,6,‡, and Wei-Feng Yang(杨玮枫)2,3,§ |
1 Faculty of Science, Xi'an Aeronautical Institute, Xi'an 710077, China; 2 School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570288, China; 3 Center for Theoretical Physics, Hainan University, Haikou 570288, China; 4 Laboratory of Optical Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 5 College of Science, Shantou University, Shantou 515063, China; 6 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We study the above-threshold ionization (ATI) process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory. It is found that the angular-resolved ATI spectrum is sensitive to ellipticities of two lasers and emitted angles of the photoelectron. Particularly for the photon energy of the high-frequency laser more than atomic ionization potential, the width of plateau tends to a constant with increasing ellipticity of fundamental field, the dip structure disappears with increasing ellipticity of the high-frequency field. With the help of the quantum channel analysis, it is shown that the angular distribution depends mainly on the ellipticity of high-frequency field in the case that its frequency is high. Moreover, one can see that the maximal and minimal energies in quantum numerical results are in good agreement with the classical prediction. Our investigation may provide theoretical support for experimental research on polarization control of ionization in elliptically polarized two-color laser fields.
|
Received: 24 December 2023
Revised: 19 January 2024
Accepted manuscript online: 01 February 2024
|
PACS:
|
33.20.Ea
|
(Infrared spectra)
|
|
33.20.Ni
|
(Vacuum ultraviolet spectra)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
33.60.+q
|
(Photoelectron spectra )
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104285, 12074240, 12204135, 12374260, 12264013, 12204136, 92250303, and 12074418), the Guangdong Basicand Applied Basic Research Foundation (Grant No. 2022A1515011742), the Special Scientific Research Program supported by the Shaanxi Education Department (Grant No. 22JK0423), the Natural Science Basic Research Program of Shaanxi Province of China (Grant Nos. 2023-JC-QN-0085 and 2023-JC-QN-0267), the Hainan Provincial Natural Science Foundation of China (Grant Nos. 122CXTD504, 123MS002, 123QN179, 123QN180, and 122QN217), the Sino-German Mobility Programme (Grant No. M-0031), the Xi’an Aeronautical Institute 2023 Innovation and Entrepreneurship Training Program for college students (Grant No. S202311736036) and the Course Ideological and Political Education Program (Grant No. 23ZLGC5030). |
Corresponding Authors:
Fa-Cheng Jin, Bing-Bing Wang, Wei-Feng Yang
E-mail: fchjin@163.com;wbb@aphy.iphy.ac.cn;wfyang@hainanu.edu.cn
|
Cite this article:
Fa-Cheng Jin(金发成), Hui-Hui Yang(杨慧慧), Xiao-Hong Song(宋晓红), Fei Li(李飞), Ling-Ling Du(杜玲玲), Hong-Jie Xue(薛红杰), Li-Min Wei(魏丽敏), Yue Bai(白悦), Hao-Xiang Liu(刘浩翔), Bing-Bing Wang(王兵兵), and Wei-Feng Yang(杨玮枫) Polarization control of above-threshold ionization spectrum in elliptically polarized two-color laser fields 2024 Chin. Phys. B 33 043301
|
[1] Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G and Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35 [2] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [3] Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127 [4] Tong J, Liu X, Dong W, Jiang W, Zhu M, Xu Y, Zuo Z, Lu P, Gong X, Song X, Yang W and Wu J 2022 Phys. Rev. Lett. 129 173201 [5] Song X, Shi G, Zhang G, Xu J, Lin C, Chen J and Yang W 2018 Phys. Rev. Lett. 121 103201 [6] Liu X, Zhang G, Li J, Shi G, Zhou M, Huang B, Tang Y, Song X and Yang W 2020 Phys. Rev. Lett. 124 113202 [7] Della Picca R, Gramajo A A, Garibotti C R, López S D and Arbó D G 2016 Phys. Rev. A 93 023419 [8] Song X, Xu J, Lin C, Sheng Z, Liu P, Yu X, Zhang H, Yang W, Hu S, Chen J, Xu S, Chen Y, Quan W and Liu X 2017 Phys. Rev. A 95 033426 [9] Ge P, Dou Y, Han M, Fang Y, Guo Z, Wu C, Gong Q and Liu Y 2022 Phys. Rev. A 106 053102 [10] Bai Y, Hao X, Li W, Yang W and Chen J 2023 Phys. Rev. A 108 013115 [11] Cao C, Li M, Liang J, Yan J, Guo K, Li Z, Liu Y, Zhou Y and Lu P 2022 Phys. Rev. A 106 033112 [12] Gong X, Lin C, He F, Song Q, Lin K, Ji Q Y, Zhang W, Ma J, Lu P, Liu Y, Zeng H, Yang W and Wu J 2017 Phys. Rev. Lett. 118 143203 [13] Kerbstadt S, Pengel D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. A 97 063402 [14] Jin F, Yang W, Liu X, Zhang H, Dong W, Song X and Chen J 2022 Phys. Rev. Res. 4 013140 [15] Zhang L, Xie X, Roither S, Kartashov D, Wang Y, Wang C, Schöffler M, Shafir D, Corkum P B, Baltuška A, Ivanov I, Kheifets A, Liu X, Staudte A and Kitzler M 2014 Phys. Rev. A 96 061401 [16] Habibović D, Gazibegović-Busuladževezić A, Busuladžić M and Milošević D B 2021 Phys. Rev. A 103 053101 [17] Wells E, Ben-Itzhak I and Jones R R 2004 Phys. Rev. Lett. 93 023001 [18] Zhao L, Dong J, Lv H, Yang T, Lian Y, Jin M, Xu H and Ding D 2016 Phys. Rev. A 94 053403 [19] Busuladžić M, Gazibegović-Busuladžić A and Milošević D B 2017 Phys. Rev. A 95 033411 [20] Hasović E, Becker W and MiloševićD B 2016 Opt. Express 24 6413 [21] Sviridov A V, Frolov M V, Popruzhenko S V, Geng L and Peng L Y 2022 Phys. Rev. A 106 033117 [22] Čerkić A, Busuladžić M and Miloševic D B 2017 Phys. Rev. A 95 063401 [23] Zhang G P, Si M S, Murakami M, Bai Y H and George T F 2018 Nat. Commun. 9 4727 [24] Huo X X, Xing Y H, Qi T, Sun Y, Li B, Zhang J and Liu X S 2021 Phys. Rev. A 103 053116 [25] Peng L Y, Jiang W C, Geng J W, Xiong W H and Gong Q 2015 Phys. Rep. 575 1 [26] Hofbrucker J, Volotka A V and Fritzsche S 2018 Phys. Rev. Lett. 121 053401 [27] Hofbrucker J, Böning B, Volotka A V and Fritzsche S 2021 Phys. Rev. A 104 013102 [28] Zhai C, Zhu X, Long J, Shao R, Zhang Y, He L, Tang Q, Li Y, Lan P, Yu B and Lu P 2021 Phys. Rev. A 103 033114 [29] Allaria E, Diviacco B, Callegari C, et al. 2014 Phys. Rev. X 4 041040 [31] Zhao X, Wei H, Yu W W and Lin C D 2018 Phys. Rev. A 98 053404 [32] Lin C D, Le A T, Chen Z, Morishita T and Lucchese R 2010 J. Phys. B 43 122001 [33] Düsterer S, Rading L, Johnsson P, Rouzée A, Hundertmark A, Vrakking M J J, Radcliffe P, Meyer M, Kazansky A K and Kabachnik N M 2013 J. Phys. B 46 164026 [34] Düsterer S, Hartmann G, Babies F, Beckmann A, Brenner G, Buck J, Costello J, Dammann L, De Fanis A, GeŞler P, Glaser L, Ilchen M, Johnsson P, Kazansky A K, Kelly T J, Mazza T, Meyer M, Nosik V L, Sazhina I P, Scholz F, Seltmann J, Sotoudi H, Viefhaus J and Kabachnik N M 2016 J. Phys. B 49 165003 [35] Guo D S and Drake G W F 1992 J. Phys. A:Math. Gen. 25 5377 [36] Guo D S, Ạberg T and Crasemann B 1989 Phys. Rev. A 40 4997 [37] Cheng T, Li X, Ao S, Wu L and Fu P 2003 Phys. Rev. A 68 033411 [38] Gao L, Li X, Fu P, Freeman R R and Guo D S 2000 Phys. Rev. A 61 063407 [39] Wang B, Gao L, Li X, Guo D S and Fu P 2007 Phys. Rev. A 75 063419 [40] Wang B, Guo Y, Chen J, Yan Z C and Fu P 2012 Phys. Rev. A 85 023402 [41] Jin F, Chen J, Yang Y, Liu X, Yan Z C and Wang B 2018 J. Phys. B 51 035601 [42] Jin F, Tian Y, Chen J, Yang Y, Liu X, Yan Z C and Wang B 2016 Phys. Rev. A 93 043417 [43] Fu P, Wang B, Li X and Gao L 2001 Phys. Rev. A 64 063401 [44] Jin F, Yang H, Wang B, Wei L and Wu H 2019 Opt. Express 27 20754 [45] Jin F, Yang H, Zhang H, Wang B and Yang W 2021 Opt. Express 29 10726 [46] Liu M, Guo Y and Wang B 2015 Chin. Phys. B 24 073201 [47] Zhang K, Chen J, Hao X L, Fu P, Yan Z C and Wang B 2013 Phys. Rev. A 88 043435 [48] Reiss H R 1980 Phys. Rev. A 22 1786 [49] Becker A and Faisal F H M 2005 J. Phys. B 38 R1 [50] Hu X, Wang H and Guo D S 2008 Can. J. Phys. 86 863 [51] Ma H, Wang X, Zhang L, Zou Z, Yuan J, Ma Y, Lv R, Shen Z, Yan T, Weidemüller M, Ye D and Jiang Y 2023 Phys. Rev. A 107 033114 [52] Boll D I R, Fojón O A, McCurdy C W and Palacios A 2019 Phys. Rev. A 99 023416 [53] Milošević D B and Ehlotzky F 2003 Adv. At. Mol. Opt. Phys. 49 373 [54] Minemoto S, Shimada H, Komatsu K, Komatsubara W, Majima T, Mizuno T, Owada S, Sakai H, Togashi T, Yoshida S, Yabashi M and Yagishita A 2018 J. Phys. B 51 075601 [55] Lötstedt E and Jentschura U D 2009 Phys. Rev. E 79 026707 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|