Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040203    DOI: 10.1088/1674-1056/ad21f4
GENERAL Prev   Next  

Thermal-contact capacity of one-dimensional attractive Gaudin—Yang model

Xiao-Min Zhang(张小敏)1, Song Cheng(程颂)2,†, and Yang-Yang Chen(陈洋洋)1,3,4,‡
1 Institute of Modern Physics, Northwest University, Xi'an 710069, China;
2 Beijing Computational Science Research Center, Beijing 100193, China;
3 Peng Huanwu Center for Fundamental Theory, Northwest University, Xi'an 710069, China;
4 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an 710069, China
Abstract  Tan's contact C is an important quantity measuring the two-body correlations at short distances in a dilute system. Here we make use of the technique of exactly solved models to study the thermal-contact capacity KT, i.e., the derivative of C with respect to temperature in the attractive Gaudin—Yang model. It is found that KT is useful in identifying the low temperature phase diagram, and using the obtained analytical expression of KT, we study its critical behavior and the scaling law. Especially, we show KT versus temperature and thus the non-monotonic tendency of C in a tiny interval, for both spin-balanced and imbalanced phases. Such a phenomenon is merely observed in multi-component systems such as SU(2) Fermi gases and spinor bosons, indicating the crossover from the Tomonaga—Luttinger liquid to the spin-coherent liquid.
Keywords:  Tan's Contact      Gaudin—Yang model      Bethe ansatz  
Received:  31 October 2023      Revised:  25 December 2023      Accepted manuscript online:  24 January 2024
PACS:  02.30.Jr (Partial differential equations)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.05.Dz (Control systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104372, 12047511, and 12247103) and the Youth Innovation Team of Shaanxi Universities.
Corresponding Authors:  Song Cheng, Yang-Yang Chen     E-mail:  scheng@csrc.ac.cn;chenyy@nwu.edu.cn

Cite this article: 

Xiao-Min Zhang(张小敏), Song Cheng(程颂), and Yang-Yang Chen(陈洋洋) Thermal-contact capacity of one-dimensional attractive Gaudin—Yang model 2024 Chin. Phys. B 33 040203

[1] Tan S 2008 Ann. Phys. 323 2952
[2] Tan S 2008 Ann. Phys. 323 2971
[3] Tan S 2008 Ann. Phys. 323 2987
[4] Barth M and Zwerger W 2011 Ann. Phys. 326 2544
[5] Chen Y Y, Jiang Y Y, Guan X W and Zhou Q 2014 Nat. Commun. 5 5140
[6] He W B, Chen Y Y, Zhang S Z and Guan X W 2016 Phys. Rev. A 94 031604(R)
[7] Peng L, Yu Y C and Guan X W 2019 Phys. Rev. B 100 245435
[8] Yang C N 1967 Phys. Rev. Lett. 19 1312
[9] Gaudin M 1967 Phys. Lett. A 24 55
[10] Guan X W, Yin X G, Foerster A, Batchelor M T, Lee C H and Lin H Q 2013 Phys. Rev. Lett. 111 130401
[11] Guan X W and Ho T L 2011 Phys. Rev. A 84 023616
[12] Lee J Y and Guan X W 2011 Nucl. Phys. B 853 125
[13] Liao Y A, Rittner A S C, Paprotta T, Li W, Partridge G B, Hulet R G, Baur S K and Mueller E J 2010 Nature 467 567
[14] Guan X W, Batchelor M T and Lee C H 2013 Rev. Mod. Phys. 85 1633
[15] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge:Cambridge University Press)
[16] Please refer to chapter 13 of Ref. 15 for a more detailed explanation.
[17] Capuzzi P and Vignolo P 2020 Phys. Rev. A 101 013633
[18] Pâţu O I and Klümper A 2016 Phys. Rev. A 93 033616
[19] Pâţu O I, Klümper A and Foerster A 2018 Phys. Rev. Lett. 120 243402
[20] Fiete G A 2007 Rev. Mod. Phys. 79 801
[21] Cheianov V V and Zvonarev M B 2004 Phys. Rev. Lett. 92 176401
[22] Cheianov V V, Smith H and Zvonarev M B 2005 Phys. Rev. A 71 033610
[23] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546
[24] Zhou Q and Ho T L 2010 Phys. Rev. Lett. 105 245702
[1] Thermodynamic limit of the XXZ central spin model with an arbitrary central magnetic field
Fa-Kai Wen(温发楷) and Kun Hao(郝昆). Chin. Phys. B, 2023, 32(9): 090307.
[2] Off-diagonal approach to the exact solution of quantum integrable systems
Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Wen-Li Yang(杨文力), Kangjie Shi(石康杰), and Yupeng Wang(王玉鹏). Chin. Phys. B, 2023, 32(11): 117504.
[3] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[4] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[5] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
[6] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[7] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
[8] Exact solution of Heisenberg model with site-dependent exchange couplings and Dzyloshinsky-Moriya interaction
Yang Li-Jun (杨丽君), Cao Jun-Peng (曹俊鹏), Yang Wen-Li (杨文力). Chin. Phys. B, 2015, 24(10): 107502.
[9] BETHE ANSATZ FOR SUPERSYMMETRIC MODEL WITH Uq[osp(1|2)] SYMMETRY
Yang Wen-li (杨文力). Chin. Phys. B, 2001, 10(2): 109-112.
No Suggested Reading articles found!