Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040203    DOI: 10.1088/1674-1056/ad21f4
GENERAL Prev   Next  

Thermal-contact capacity of one-dimensional attractive Gaudin—Yang model

Xiao-Min Zhang(张小敏)1, Song Cheng(程颂)2,†, and Yang-Yang Chen(陈洋洋)1,3,4,‡
1 Institute of Modern Physics, Northwest University, Xi'an 710069, China;
2 Beijing Computational Science Research Center, Beijing 100193, China;
3 Peng Huanwu Center for Fundamental Theory, Northwest University, Xi'an 710069, China;
4 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an 710069, China
Abstract  Tan's contact $\mathcal{C}$ is an important quantity measuring the two-body correlations at short distances in a dilute system. Here we make use of the technique of exactly solved models to study the thermal-contact capacity $\mathcal{K}_{\scriptscriptstyle{\rm T}}$, i.e., the derivative of $\mathcal{C}$ with respect to temperature in the attractive Gaudin—Yang model. It is found that $\mathcal{K}_{\scriptscriptstyle{\rm T}}$ is useful in identifying the low temperature phase diagram, and using the obtained analytical expression of $\mathcal{K}_{\scriptscriptstyle{\rm T}}$, we study its critical behavior and the scaling law. Especially, we show $\mathcal{K}_{\scriptscriptstyle{\rm T}}$ versus temperature and thus the non-monotonic tendency of $\mathcal{C}$ in a tiny interval, for both spin-balanced and imbalanced phases. Such a phenomenon is merely observed in multi-component systems such as $SU(2)$ Fermi gases and spinor bosons, indicating the crossover from the Tomonaga—Luttinger liquid to the spin-coherent liquid.
Keywords:  Tan's Contact      Gaudin—Yang model      Bethe ansatz  
Received:  31 October 2023      Revised:  25 December 2023      Accepted manuscript online:  24 January 2024
PACS:  02.30.Jr (Partial differential equations)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.05.Dz (Control systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104372, 12047511, and 12247103) and the Youth Innovation Team of Shaanxi Universities.
Corresponding Authors:  Song Cheng, Yang-Yang Chen     E-mail:  scheng@csrc.ac.cn;chenyy@nwu.edu.cn

Cite this article: 

Xiao-Min Zhang(张小敏), Song Cheng(程颂), and Yang-Yang Chen(陈洋洋) Thermal-contact capacity of one-dimensional attractive Gaudin—Yang model 2024 Chin. Phys. B 33 040203

[1] Tan S 2008 Ann. Phys. 323 2952
[2] Tan S 2008 Ann. Phys. 323 2971
[3] Tan S 2008 Ann. Phys. 323 2987
[4] Barth M and Zwerger W 2011 Ann. Phys. 326 2544
[5] Chen Y Y, Jiang Y Y, Guan X W and Zhou Q 2014 Nat. Commun. 5 5140
[6] He W B, Chen Y Y, Zhang S Z and Guan X W 2016 Phys. Rev. A 94 031604(R)
[7] Peng L, Yu Y C and Guan X W 2019 Phys. Rev. B 100 245435
[8] Yang C N 1967 Phys. Rev. Lett. 19 1312
[9] Gaudin M 1967 Phys. Lett. A 24 55
[10] Guan X W, Yin X G, Foerster A, Batchelor M T, Lee C H and Lin H Q 2013 Phys. Rev. Lett. 111 130401
[11] Guan X W and Ho T L 2011 Phys. Rev. A 84 023616
[12] Lee J Y and Guan X W 2011 Nucl. Phys. B 853 125
[13] Liao Y A, Rittner A S C, Paprotta T, Li W, Partridge G B, Hulet R G, Baur S K and Mueller E J 2010 Nature 467 567
[14] Guan X W, Batchelor M T and Lee C H 2013 Rev. Mod. Phys. 85 1633
[15] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge:Cambridge University Press)
[16] Please refer to chapter 13 of Ref. 15 for a more detailed explanation.
[17] Capuzzi P and Vignolo P 2020 Phys. Rev. A 101 013633
[18] Pâţu O I and Klümper A 2016 Phys. Rev. A 93 033616
[19] Pâţu O I, Klümper A and Foerster A 2018 Phys. Rev. Lett. 120 243402
[20] Fiete G A 2007 Rev. Mod. Phys. 79 801
[21] Cheianov V V and Zvonarev M B 2004 Phys. Rev. Lett. 92 176401
[22] Cheianov V V, Smith H and Zvonarev M B 2005 Phys. Rev. A 71 033610
[23] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546
[24] Zhou Q and Ho T L 2010 Phys. Rev. Lett. 105 245702
[1] Thermodynamic limit of the XXZ central spin model with an arbitrary central magnetic field
Fa-Kai Wen(温发楷) and Kun Hao(郝昆). Chin. Phys. B, 2023, 32(9): 090307.
[2] Off-diagonal approach to the exact solution of quantum integrable systems
Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Wen-Li Yang(杨文力), Kangjie Shi(石康杰), and Yupeng Wang(王玉鹏). Chin. Phys. B, 2023, 32(11): 117504.
[3] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[4] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[5] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
[6] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[7] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
[8] Exact solution of Heisenberg model with site-dependent exchange couplings and Dzyloshinsky-Moriya interaction
Yang Li-Jun (杨丽君), Cao Jun-Peng (曹俊鹏), Yang Wen-Li (杨文力). Chin. Phys. B, 2015, 24(10): 107502.
[9] BETHE ANSATZ FOR SUPERSYMMETRIC MODEL WITH Uq[osp(1|2)] SYMMETRY
Yang Wen-li (杨文力). Chin. Phys. B, 2001, 10(2): 109-112.
No Suggested Reading articles found!