Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 038902    DOI: 10.1088/1674-1056/ad0bf6
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Speed limit effect during lane change in a two-lane lattice model under V2X environment

Can Jin(金灿)1,3, Guang-Han Peng(彭光含)1,2,†, and Fang-Yan Nie(聂方彦)4,‡
1 College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China;
2 Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China;
3 Information and Modern Education Technology Center, Hunan University of Arts and Science, Changde 415000, China;
4 Computer and Information Engineering College, Guizhou University of Commerce, Guiyang 550014, China
Abstract  Speed limit measures are ubiquitous due to the complexity of the road environment, which can be supplied with the help of vehicle to everything (V2X) communication technology. Therefore, the influence of speed limit on traffic system will be investigated to construct a two-lane lattice model accounting for the speed limit effect during the lane change process under V2X environment. Accordingly, the stability condition and the mKdV equation are closely associated with the speed limit effect through theory analysis. Moreover, the evolution of density and hysteresis loop is simulated to demonstrate the positive role of the speed limit effect on traffic stability in the cases of strong reaction intensity and high limited speed.
Keywords:  traffic flow      lattice model      speed limit  
Received:  07 October 2023      Revised:  01 November 2023      Accepted manuscript online:  13 November 2023
PACS:  89.40.-a (Transportation)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the Guangxi Natural Science Foundation, China (Grant No. 2022GXNSFDA035080), the Central Government Guidance Funds for Local Scientific and Technological Development, China (Grant No. Guike ZY22096024), and the National Natural Science Foundation, China (Grant No. 61963008).
Corresponding Authors:  Guang-Han Peng, Fang-Yan Nie     E-mail:  pengguanghan@163.com;niefyan@gzcc.edu.cn

Cite this article: 

Can Jin(金灿), Guang-Han Peng(彭光含), and Fang-Yan Nie(聂方彦) Speed limit effect during lane change in a two-lane lattice model under V2X environment 2024 Chin. Phys. B 33 038902

[1] Zhai C, Wu W T and Luo S W 2021 Chin. Phys. B 30 100507
[2] Zeng J W, Qian Y S, Li J, Zhang Y Z and Xu D J 2023 Physica A 609 128331
[3] Wang X, Xue Y and Feng S W 2023 Eur. Phys. J. B 96 85
[4] Zhang F T, Qian Y S and Zeng J W 2023 IEEE Trans. Intell. Transp. Syst. 24 6507
[5] Zhai C and Wu W 2018 Nonlinear Dyn. 93 2185
[6] Zhai C and Wu W 2021 Nonlinear Dyn. 106 3379
[7] Zhai C, Wu W and Xiao Y 2022 Appl. Math. Model. 108 770
[8] Ren W L, Cheng R J and Ge H X 2021 Chin. Phys. B 30 120506
[9] Gong Y and Zhu W X 2022 Chin. Phys. B 31 024502
[10] Yadav S and Redhu P 2023 Nonlinear Dyn. 111 13245
[11] Zhang X Z, Shi Z K, Yu S W and Ma L J 2023 Physica A 615 128551
[12] Peng G H, Wang K K, Zhao H Z and Tan H L 2023 Nonlinear Dyn. 111 13089
[13] Han Y Y, Bai C C, Jin S, Wang R J and Ma D F 2023 Transp. B 11 1311
[14] Zhai C and Wu W 2018 Phys. Lett. A 382 3381
[15] Zhai C and Wu W 2021 Physica A 584 126364
[16] Zhai C and Wu W 2022 Physica A 588 126561
[17] Jiang Y Q, Hu Y G and Huang X Q 2022 Physica A 608 128272
[18] Zhang G and Tian D D 2021 Chin. Phys. B 30 120201
[19] Zhai C, Wu W T and Xiao Y P 2023 Chaos Solitons Fractals 171 113515
[20] Peng G H, Luo C L, Zhao H Z and Tan H L 2023 Chin. Phys. B 32 018902
[21] Nagatani T 1998 Physica A 261 599
[22] Nagatani T 1999 Physica A 264 581
[23] Nagatani T 1999 Physica A 265 297
[24] Tian J, Jia B, Li X and Gao Z 2010 Chin. Phys. B 19 040303
[25] Wang T, Gao Z, Zhao X, Tian J and Zhang W 2012 Chin. Phys. B 21 070507
[26] Li Z P, Li X L and Liu F Q 2008 Int. J. Mod. Phys. C 19 1163
[27] Tian J, Yuan Z, Jia B, Li M and Jiang G 2012 Physica A 391 4476
[28] Wang T, Gao Z, Zhang J and Zhao X 2014 Nonlinear Dyn. 75 27
[29] Gupta A and Redhu P 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1600
[30] Tian C, Sun D and Zhang M 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4524
[31] Redhu P and Gupta A 2014 Nonlinear Dyn. 78 957
[32] Gupta A and Redhu P 2013 Phys. Lett. A 377 2027
[33] Ge H X, Zheng P J, Lo S M and Cheng R J 2014 Nonlinear Dyn. 76 441
[34] Kang Y R and Sun D H 2013 Nonlinear Dyn. 71 531
[35] Zhang Y, Wang S, Pan D B and Zhang G 2021 Physica A 561 125269
[36] Ren X and Zhao S 2021 Nonlinear Dyn. 103 1869
[37] Wang Q, Cheng R J and Ge H X 2020 Physica A 559 125023
[38] Chang Y, He Z and Cheng R 2019 Physica A 514 522
[39] Redhu P and Gupta A 2015 Physica A 421 249
[40] Zhai C and Wu W 2019 Mod. Phys. Lett. B 33 1950273
[41] Sharma S 2015 Nonlinear Dyn. 81 991
[42] Gupta A and Redhu P 2013 Physica A 392 5622
[43] Gupta A and Redhu P 2014 Nonlinear Dyn. 76 1001
[44] Kaur R and Sharma S 2018 Physica A 499 110
[45] Wang T, Zang R, Xu K and Zhang J 2019 Physica A 526 120711
[46] Zhang Y, Zhao M, Sun D, Wang S, Huang S and Chen D 2021 Commun. Nonlinear Sci. Numer. Simul. 94 105541
[47] Zhai C and Wu W 2021 Commun. Nonlinear Sci. Numer. Simul. 95 105667
[48] Ge H X, Cui Y, Zhu K Q and Cheng R J 2015 Commun. Nonlinear Sci. Numer. Simul. 22 903
[49] Redhu P and Gupta A 2015 Commun. Nonlinear Sci. Numer. Simul. 27 263
[50] Li Y F, Zhang L, Zheng T X and Li Y G 2015 Commun. Nonlinear Sci. Numer. Simul. 29 224
[51] Zhu C Q, Zhong S Q, Li G Y and Ma S F 2017 Physica A 468 445
[52] Zhou J and Shi Z 2016 Nonlinear Dyn. 83 1217
[53] Gupta A, Sharma S and Redhu P 2014 Commun. Theor. Phys. 62 393
[54] Cheng R and Wang Y 2019 Physica A 513 510
[55] Zhang G 2018 Nonlinear Dyn. 91 809
[56] Zhang G, Sun D H and Zhao M 2018 Commun. Nonlinear Sci. Numer. Simul. 54 347
[57] Jiang C, Cheng R J and Ge H X 2019 Physica A 513 465
[58] Redhu P and Siwach V 2018 Physica A 492 1473
[59] Verma M and Sharma S 2022 Chaos Solitons Fractals 162 112435
[60] Gupta A, Sharma S and Redhu P 2015 Nonlinear Dyn. 80 1091
[61] Natagani T 1999 Phys. Rev. E 60 1535
[62] Zhang Y C, Zhao M and Sun D H 2022 Physica A 603 127710
[63] Kaur R and Sharma S 2018 Physica A 510 446
[64] Sharma S 2016 Nonlinear Dyn. 86 2093
[65] Kaur R and Sharma S 2017 Physica A 471 59
[66] Kaur R and Sharma S 2018 Phys. Lett. A 382 1449
[67] Li Z P, Zhang R, Xu S Z and Qian Y Q 2015 Commun. Nonlinear Sci. Numer. Simul. 24 52
[68] Zhang G, Sun D H and Liu W N 2015 Nonlinear Dyn. 81 1623
[69] Zhang G, Sun D H, Liu W N, Zhao M and Cheng S L 2015 Physica A 422 16
[70] Zhang G, Sun D H, Zhao M, Liu W N and Cheng S L 2015 Int. J. Mod. Phys. C 26 1550062
[71] Sharma S 2015 Physica A 421 401
[72] Zhu C Q, Zhong S Q and Ma S F 2019 Commun. Nonlinear Sci. Numer. Simul. 73 229
[73] Madaan N and Sharma S 2021 Physica A 564 125446
[74] Madaan N and Sharma S 2022 Physica A 599 127393
[75] Sun F, Chow A, Lo S M and Ge H X 2018 Physica A 511 389
[76] Zhai C and Wu W 2018 Mod. Phys. Lett. B 32 1850233
[77] Madaan N and Sharma S 2022 Eur. Phys. J. B 95 6
[78] Wang T, Zhang J, Gao Z Y, Zhang W Y and Li S B 2017 Nonlinear Dyn. 88 1345
[1] Effects of connected automated vehicle on stability and energy consumption of heterogeneous traffic flow system
Jin Shen(申瑾), Jian-Dong Zhao(赵建东), Hua-Qing Liu(刘华清), Rui Jiang(姜锐), and Zhi-Xin Yu(余智鑫). Chin. Phys. B, 2024, 33(3): 030504.
[2] Application of shifted lattice model to 3D compressible lattice Boltzmann method
Hao-Yu Huang(黄好雨), Ke Jin(金科), Kai Li(李凯), and Xiao-Jing Zheng(郑晓静). Chin. Phys. B, 2023, 32(9): 094701.
[3] Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism
Hai-Jian Bai(柏海舰), Chen-Chen Guo(过晨晨), Heng Ding(丁恒), Li-Yang Wei(卫立阳), Ting Sun(孙婷), and Xing-Yu Chen(陈星宇). Chin. Phys. B, 2023, 32(6): 060507.
[4] Efficient control of connected and automated vehicles on a two-lane highway with a moving bottleneck
Huaqing Liu(刘华清) and Rui Jiang(姜锐). Chin. Phys. B, 2023, 32(5): 054501.
[5] Quantum speed limit of a single atom in a squeezed optical cavity mode
Ya-Jie Ma(马雅洁), Xue-Chen Gao(高雪晨), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040308.
[6] Inatorial forecasting method considering macro and micro characteristics of chaotic traffic flow
Yue Hou(侯越), Di Zhang(张迪), Da Li(李达), and Ping Yang(杨萍). Chin. Phys. B, 2023, 32(10): 100508.
[7] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[8] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[9] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[10] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[11] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[12] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[13] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[14] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[15] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
No Suggested Reading articles found!