INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Speed limit effect during lane change in a two-lane lattice model under V2X environment |
Can Jin(金灿)1,3, Guang-Han Peng(彭光含)1,2,†, and Fang-Yan Nie(聂方彦)4,‡ |
1 College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China; 2 Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China; 3 Information and Modern Education Technology Center, Hunan University of Arts and Science, Changde 415000, China; 4 Computer and Information Engineering College, Guizhou University of Commerce, Guiyang 550014, China |
|
|
Abstract Speed limit measures are ubiquitous due to the complexity of the road environment, which can be supplied with the help of vehicle to everything (V2X) communication technology. Therefore, the influence of speed limit on traffic system will be investigated to construct a two-lane lattice model accounting for the speed limit effect during the lane change process under V2X environment. Accordingly, the stability condition and the mKdV equation are closely associated with the speed limit effect through theory analysis. Moreover, the evolution of density and hysteresis loop is simulated to demonstrate the positive role of the speed limit effect on traffic stability in the cases of strong reaction intensity and high limited speed.
|
Received: 07 October 2023
Revised: 01 November 2023
Accepted manuscript online: 13 November 2023
|
PACS:
|
89.40.-a
|
(Transportation)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
Fund: Project supported by the Guangxi Natural Science Foundation, China (Grant No. 2022GXNSFDA035080), the Central Government Guidance Funds for Local Scientific and Technological Development, China (Grant No. Guike ZY22096024), and the National Natural Science Foundation, China (Grant No. 61963008). |
Corresponding Authors:
Guang-Han Peng, Fang-Yan Nie
E-mail: pengguanghan@163.com;niefyan@gzcc.edu.cn
|
Cite this article:
Can Jin(金灿), Guang-Han Peng(彭光含), and Fang-Yan Nie(聂方彦) Speed limit effect during lane change in a two-lane lattice model under V2X environment 2024 Chin. Phys. B 33 038902
|
[1] Zhai C, Wu W T and Luo S W 2021 Chin. Phys. B 30 100507 [2] Zeng J W, Qian Y S, Li J, Zhang Y Z and Xu D J 2023 Physica A 609 128331 [3] Wang X, Xue Y and Feng S W 2023 Eur. Phys. J. B 96 85 [4] Zhang F T, Qian Y S and Zeng J W 2023 IEEE Trans. Intell. Transp. Syst. 24 6507 [5] Zhai C and Wu W 2018 Nonlinear Dyn. 93 2185 [6] Zhai C and Wu W 2021 Nonlinear Dyn. 106 3379 [7] Zhai C, Wu W and Xiao Y 2022 Appl. Math. Model. 108 770 [8] Ren W L, Cheng R J and Ge H X 2021 Chin. Phys. B 30 120506 [9] Gong Y and Zhu W X 2022 Chin. Phys. B 31 024502 [10] Yadav S and Redhu P 2023 Nonlinear Dyn. 111 13245 [11] Zhang X Z, Shi Z K, Yu S W and Ma L J 2023 Physica A 615 128551 [12] Peng G H, Wang K K, Zhao H Z and Tan H L 2023 Nonlinear Dyn. 111 13089 [13] Han Y Y, Bai C C, Jin S, Wang R J and Ma D F 2023 Transp. B 11 1311 [14] Zhai C and Wu W 2018 Phys. Lett. A 382 3381 [15] Zhai C and Wu W 2021 Physica A 584 126364 [16] Zhai C and Wu W 2022 Physica A 588 126561 [17] Jiang Y Q, Hu Y G and Huang X Q 2022 Physica A 608 128272 [18] Zhang G and Tian D D 2021 Chin. Phys. B 30 120201 [19] Zhai C, Wu W T and Xiao Y P 2023 Chaos Solitons Fractals 171 113515 [20] Peng G H, Luo C L, Zhao H Z and Tan H L 2023 Chin. Phys. B 32 018902 [21] Nagatani T 1998 Physica A 261 599 [22] Nagatani T 1999 Physica A 264 581 [23] Nagatani T 1999 Physica A 265 297 [24] Tian J, Jia B, Li X and Gao Z 2010 Chin. Phys. B 19 040303 [25] Wang T, Gao Z, Zhao X, Tian J and Zhang W 2012 Chin. Phys. B 21 070507 [26] Li Z P, Li X L and Liu F Q 2008 Int. J. Mod. Phys. C 19 1163 [27] Tian J, Yuan Z, Jia B, Li M and Jiang G 2012 Physica A 391 4476 [28] Wang T, Gao Z, Zhang J and Zhao X 2014 Nonlinear Dyn. 75 27 [29] Gupta A and Redhu P 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1600 [30] Tian C, Sun D and Zhang M 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4524 [31] Redhu P and Gupta A 2014 Nonlinear Dyn. 78 957 [32] Gupta A and Redhu P 2013 Phys. Lett. A 377 2027 [33] Ge H X, Zheng P J, Lo S M and Cheng R J 2014 Nonlinear Dyn. 76 441 [34] Kang Y R and Sun D H 2013 Nonlinear Dyn. 71 531 [35] Zhang Y, Wang S, Pan D B and Zhang G 2021 Physica A 561 125269 [36] Ren X and Zhao S 2021 Nonlinear Dyn. 103 1869 [37] Wang Q, Cheng R J and Ge H X 2020 Physica A 559 125023 [38] Chang Y, He Z and Cheng R 2019 Physica A 514 522 [39] Redhu P and Gupta A 2015 Physica A 421 249 [40] Zhai C and Wu W 2019 Mod. Phys. Lett. B 33 1950273 [41] Sharma S 2015 Nonlinear Dyn. 81 991 [42] Gupta A and Redhu P 2013 Physica A 392 5622 [43] Gupta A and Redhu P 2014 Nonlinear Dyn. 76 1001 [44] Kaur R and Sharma S 2018 Physica A 499 110 [45] Wang T, Zang R, Xu K and Zhang J 2019 Physica A 526 120711 [46] Zhang Y, Zhao M, Sun D, Wang S, Huang S and Chen D 2021 Commun. Nonlinear Sci. Numer. Simul. 94 105541 [47] Zhai C and Wu W 2021 Commun. Nonlinear Sci. Numer. Simul. 95 105667 [48] Ge H X, Cui Y, Zhu K Q and Cheng R J 2015 Commun. Nonlinear Sci. Numer. Simul. 22 903 [49] Redhu P and Gupta A 2015 Commun. Nonlinear Sci. Numer. Simul. 27 263 [50] Li Y F, Zhang L, Zheng T X and Li Y G 2015 Commun. Nonlinear Sci. Numer. Simul. 29 224 [51] Zhu C Q, Zhong S Q, Li G Y and Ma S F 2017 Physica A 468 445 [52] Zhou J and Shi Z 2016 Nonlinear Dyn. 83 1217 [53] Gupta A, Sharma S and Redhu P 2014 Commun. Theor. Phys. 62 393 [54] Cheng R and Wang Y 2019 Physica A 513 510 [55] Zhang G 2018 Nonlinear Dyn. 91 809 [56] Zhang G, Sun D H and Zhao M 2018 Commun. Nonlinear Sci. Numer. Simul. 54 347 [57] Jiang C, Cheng R J and Ge H X 2019 Physica A 513 465 [58] Redhu P and Siwach V 2018 Physica A 492 1473 [59] Verma M and Sharma S 2022 Chaos Solitons Fractals 162 112435 [60] Gupta A, Sharma S and Redhu P 2015 Nonlinear Dyn. 80 1091 [61] Natagani T 1999 Phys. Rev. E 60 1535 [62] Zhang Y C, Zhao M and Sun D H 2022 Physica A 603 127710 [63] Kaur R and Sharma S 2018 Physica A 510 446 [64] Sharma S 2016 Nonlinear Dyn. 86 2093 [65] Kaur R and Sharma S 2017 Physica A 471 59 [66] Kaur R and Sharma S 2018 Phys. Lett. A 382 1449 [67] Li Z P, Zhang R, Xu S Z and Qian Y Q 2015 Commun. Nonlinear Sci. Numer. Simul. 24 52 [68] Zhang G, Sun D H and Liu W N 2015 Nonlinear Dyn. 81 1623 [69] Zhang G, Sun D H, Liu W N, Zhao M and Cheng S L 2015 Physica A 422 16 [70] Zhang G, Sun D H, Zhao M, Liu W N and Cheng S L 2015 Int. J. Mod. Phys. C 26 1550062 [71] Sharma S 2015 Physica A 421 401 [72] Zhu C Q, Zhong S Q and Ma S F 2019 Commun. Nonlinear Sci. Numer. Simul. 73 229 [73] Madaan N and Sharma S 2021 Physica A 564 125446 [74] Madaan N and Sharma S 2022 Physica A 599 127393 [75] Sun F, Chow A, Lo S M and Ge H X 2018 Physica A 511 389 [76] Zhai C and Wu W 2018 Mod. Phys. Lett. B 32 1850233 [77] Madaan N and Sharma S 2022 Eur. Phys. J. B 95 6 [78] Wang T, Zhang J, Gao Z Y, Zhang W Y and Li S B 2017 Nonlinear Dyn. 88 1345 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|