|
|
Unconventional photon blockade in the two-photon Jaynes-Cummings model with two-frequency cavity drivings and atom driving |
Xin Liu(刘欣)1,†, Meng-Yu Tian(田梦雨)2, Xiao-Ning Cui(崔晓宁)1, and Xin-He Zhang(张馨鹤)1 |
1 School of Physics and Technology, University of Jinan, Jinan 250022, China; 2 Marketing Service Center(Center of Metrology), State Grid ShanDong Electric Power Company, Jinan 250001, China |
|
|
Abstract In a two-frequency cavity driving and atom driving atom-cavity system, we find the photon blockade effect. In a truncated eigenstates space, we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade. By including three transition pathways, we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally. Based on the master equation, we simulate the system evolution and find that the analytical solutions match well with the numerical results. Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source.
|
Received: 09 September 2023
Revised: 31 October 2023
Accepted manuscript online: 16 November 2023
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61601196). |
Corresponding Authors:
Xin Liu
E-mail: sps_liux@ujn.edu.cn
|
Cite this article:
Xin Liu(刘欣), Meng-Yu Tian(田梦雨), Xiao-Ning Cui(崔晓宁), and Xin-He Zhang(张馨鹤) Unconventional photon blockade in the two-photon Jaynes-Cummings model with two-frequency cavity drivings and atom driving 2024 Chin. Phys. B 33 020308
|
[1] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441 [2] Brekenfeld M, Niemietz D, Christesen J D and Rempe G 2020 Nat.Phys. 16 647 [3] Steane A 1998 Rep. Prog. Phys. 61 117 [4] Goldschmidt E A, Eisaman M D, Fan J, Polyakov S V and Migdall A 2008 Phys. Rev. A 78 013844 [5] Ma X S, Zotter S, Kofler J, Jennewein T and Zeilinger A 2011 Phys. Rev. A 83 043814 [6] Yuan C H, Chen L Q, Ou Z Y and Zhang W 2011 Phys. Rev. A 83 054302 [7] McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A and Kimble H J 2004 Science 303 1992 [8] Darquié B, Jones M P, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A and Grangier P 2005 Science 309 454 [9] Hennrich M, Legero T, Kuhn A and Rempe G 2004 New J. Phys. 6 86 [10] Gerace D and Savona V 2014 Phys. Rev. A 89 031803 [11] Zhou Y H, Shen H Z and Yi X X 2015 Phys. Rev. A 92 023838 [12] Shen H Z, Shang C, Zhou Y H and Yi X X 2018 Phys. Rev. A 98 023856 [13] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87 [14] Faraon A, Fushman I, Englund D, Stoltz N, Petroff P and Vuckovic J 2008 Nat. Phys. 4 859 [15] Hamsen C, Tolazzi K N, Wilk T and Rempe G 2017 Phys. Rev. Lett. 118 133604 [16] Lang C, Bozyigit D, Eichler C, Steffen L, Fink J M, Abdumalikov Jr A A, Baur M, Filipp S, da Silva M P, Blais A and Wallraff A 2011 Phys. Rev. Lett. 106 243601 [17] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601 [18] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D and Vuletic V 2012 Nature 488 57 [19] Ridolfo A, Leib M, Savasta S and Hartmann M J 2012 Phys. Rev. Lett. 109 193602 [20] Zuo Y, Huang R, Kuang L M, Xu X W and Jing H 2022 Phys. Rev. A 106 043715 [21] Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J and Estève J 2018 Phys. Rev. Lett. 121 043602 [22] Liu Y X, Xu X W, Miranowicz A and Nori F 2014 Phys. Rev. A 89 043818 [23] Ferretti S, Andreani L C, Tureci H E and Gerace D 2010 Phys. Rev. A 82 013841 [24] Liao J Q and Nori F 2013 Phys. Rev. A 88 023853 [25] Hoffman A J, Srinivasan S J, Schmidt S, Spietz L, Aumentado J, Tureci H E and Houck A A 2011 Phys. Rev. Lett. 107 053602 [26] Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, van Exter M P, Bouwmeester D and Loffler W 2018 Phys. Rev. Lett. 121 043601 [27] Trivedi R, Radulaski M, Fischer K A, Fan S and Vuckovic J 2019 Phys. Rev. Lett. 122 243602 [28] Flayac H and Savona V 2017 Phys. Rev. A 96 053810 [29] Lvovsky A I and Mlynek J 2002 Phys. Rev. Lett. 88 250401 [30] Liew T C and Savona V 2010 Phys. Rev. Lett. 104 183601 [31] Bamba M, Imamoglu A, Carusotto I and Ciuti C 2011 Phys. Rev. A 83 021802 [32] Majumdar A, Bajcsy M, Rundquist A and Vuckovic J 2012 Phys. Rev. Lett. 108 183601 [33] Zhang W, Yu Z, Liu Y and Peng Y 2014 Phys. Rev. A 89 043832 [34] Xu X W and Li Y 2014 Phys. Rev. A 90 033809 [35] Xu X W and Li Y J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 035502 [36] Zhou Y H, Wu Q C, Ye B, Xue L and Shen H Z 2019 Int. J. Theor. Phys. 58 472 [37] Zou F, Lai D G and Liao J Q 2020 Opt. Express 28 16175 [38] Li B, Huang R, Xu X, Miranowicz A and Jing H 2019 Photon. Res. 7 630 [39] Felicetti S, Rossatto D Z, Rico E, Solano E and Forn-Díaz P 2018 Phys. Rev. A 97 013851 [40] Zou F, Zhang X Y, Xu X W, Huang J F and Liao J Q 2020 Phys. Rev. A 102 053710 [41] Li H, Zhang S Q, Guo M, Li M X and Song L J 2019 Acta Phys. Sin. 68 124203 (in Chinese) [42] Yan Y, Cheng Y, Guan S, Yu D and Duan Z 2018 Opt. Lett. 43 5086 [43] Jiang S Y, Zou F, Wang Y, Huang J F, Xu X W and Liao J Q 2023 Opt. Express 31 15697 [44] Liu X, Liao Q, Xu X, Fang G and Liu S 2016 Opt. Commun. 359 359 [45] Yin Y, Chen Y, Sank D, O'Malley P J J, White T C, Barends R, Kelly J, Lucero E, Mariantoni M, Megrant A, Neill C, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 110 107001 [46] Da Silva M P, Bozyigit D, Wallraff A and Blais A 2010 Phys. Rev. A 82 043804 [47] Chen M, Tang J, Tang L, Wu H and Xia K 2022 Phys. Rev. Res. 4 033083 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|