Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020308    DOI: 10.1088/1674-1056/ad0cca
GENERAL Prev   Next  

Unconventional photon blockade in the two-photon Jaynes-Cummings model with two-frequency cavity drivings and atom driving

Xin Liu(刘欣)1,†, Meng-Yu Tian(田梦雨)2, Xiao-Ning Cui(崔晓宁)1, and Xin-He Zhang(张馨鹤)1
1 School of Physics and Technology, University of Jinan, Jinan 250022, China;
2 Marketing Service Center(Center of Metrology), State Grid ShanDong Electric Power Company, Jinan 250001, China
Abstract  In a two-frequency cavity driving and atom driving atom-cavity system, we find the photon blockade effect. In a truncated eigenstates space, we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade. By including three transition pathways, we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally. Based on the master equation, we simulate the system evolution and find that the analytical solutions match well with the numerical results. Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source.
Keywords:  photon blockade      single photon source      quantum interference  
Received:  09 September 2023      Revised:  31 October 2023      Accepted manuscript online:  16 November 2023
PACS:  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61601196).
Corresponding Authors:  Xin Liu     E-mail:  sps_liux@ujn.edu.cn

Cite this article: 

Xin Liu(刘欣), Meng-Yu Tian(田梦雨), Xiao-Ning Cui(崔晓宁), and Xin-He Zhang(张馨鹤) Unconventional photon blockade in the two-photon Jaynes-Cummings model with two-frequency cavity drivings and atom driving 2024 Chin. Phys. B 33 020308

[1] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[2] Brekenfeld M, Niemietz D, Christesen J D and Rempe G 2020 Nat.Phys. 16 647
[3] Steane A 1998 Rep. Prog. Phys. 61 117
[4] Goldschmidt E A, Eisaman M D, Fan J, Polyakov S V and Migdall A 2008 Phys. Rev. A 78 013844
[5] Ma X S, Zotter S, Kofler J, Jennewein T and Zeilinger A 2011 Phys. Rev. A 83 043814
[6] Yuan C H, Chen L Q, Ou Z Y and Zhang W 2011 Phys. Rev. A 83 054302
[7] McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A and Kimble H J 2004 Science 303 1992
[8] Darquié B, Jones M P, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A and Grangier P 2005 Science 309 454
[9] Hennrich M, Legero T, Kuhn A and Rempe G 2004 New J. Phys. 6 86
[10] Gerace D and Savona V 2014 Phys. Rev. A 89 031803
[11] Zhou Y H, Shen H Z and Yi X X 2015 Phys. Rev. A 92 023838
[12] Shen H Z, Shang C, Zhou Y H and Yi X X 2018 Phys. Rev. A 98 023856
[13] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
[14] Faraon A, Fushman I, Englund D, Stoltz N, Petroff P and Vuckovic J 2008 Nat. Phys. 4 859
[15] Hamsen C, Tolazzi K N, Wilk T and Rempe G 2017 Phys. Rev. Lett. 118 133604
[16] Lang C, Bozyigit D, Eichler C, Steffen L, Fink J M, Abdumalikov Jr A A, Baur M, Filipp S, da Silva M P, Blais A and Wallraff A 2011 Phys. Rev. Lett. 106 243601
[17] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601
[18] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D and Vuletic V 2012 Nature 488 57
[19] Ridolfo A, Leib M, Savasta S and Hartmann M J 2012 Phys. Rev. Lett. 109 193602
[20] Zuo Y, Huang R, Kuang L M, Xu X W and Jing H 2022 Phys. Rev. A 106 043715
[21] Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J and Estève J 2018 Phys. Rev. Lett. 121 043602
[22] Liu Y X, Xu X W, Miranowicz A and Nori F 2014 Phys. Rev. A 89 043818
[23] Ferretti S, Andreani L C, Tureci H E and Gerace D 2010 Phys. Rev. A 82 013841
[24] Liao J Q and Nori F 2013 Phys. Rev. A 88 023853
[25] Hoffman A J, Srinivasan S J, Schmidt S, Spietz L, Aumentado J, Tureci H E and Houck A A 2011 Phys. Rev. Lett. 107 053602
[26] Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, van Exter M P, Bouwmeester D and Loffler W 2018 Phys. Rev. Lett. 121 043601
[27] Trivedi R, Radulaski M, Fischer K A, Fan S and Vuckovic J 2019 Phys. Rev. Lett. 122 243602
[28] Flayac H and Savona V 2017 Phys. Rev. A 96 053810
[29] Lvovsky A I and Mlynek J 2002 Phys. Rev. Lett. 88 250401
[30] Liew T C and Savona V 2010 Phys. Rev. Lett. 104 183601
[31] Bamba M, Imamoglu A, Carusotto I and Ciuti C 2011 Phys. Rev. A 83 021802
[32] Majumdar A, Bajcsy M, Rundquist A and Vuckovic J 2012 Phys. Rev. Lett. 108 183601
[33] Zhang W, Yu Z, Liu Y and Peng Y 2014 Phys. Rev. A 89 043832
[34] Xu X W and Li Y 2014 Phys. Rev. A 90 033809
[35] Xu X W and Li Y J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 035502
[36] Zhou Y H, Wu Q C, Ye B, Xue L and Shen H Z 2019 Int. J. Theor. Phys. 58 472
[37] Zou F, Lai D G and Liao J Q 2020 Opt. Express 28 16175
[38] Li B, Huang R, Xu X, Miranowicz A and Jing H 2019 Photon. Res. 7 630
[39] Felicetti S, Rossatto D Z, Rico E, Solano E and Forn-Díaz P 2018 Phys. Rev. A 97 013851
[40] Zou F, Zhang X Y, Xu X W, Huang J F and Liao J Q 2020 Phys. Rev. A 102 053710
[41] Li H, Zhang S Q, Guo M, Li M X and Song L J 2019 Acta Phys. Sin. 68 124203 (in Chinese)
[42] Yan Y, Cheng Y, Guan S, Yu D and Duan Z 2018 Opt. Lett. 43 5086
[43] Jiang S Y, Zou F, Wang Y, Huang J F, Xu X W and Liao J Q 2023 Opt. Express 31 15697
[44] Liu X, Liao Q, Xu X, Fang G and Liu S 2016 Opt. Commun. 359 359
[45] Yin Y, Chen Y, Sank D, O'Malley P J J, White T C, Barends R, Kelly J, Lucero E, Mariantoni M, Megrant A, Neill C, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 110 107001
[46] Da Silva M P, Bozyigit D, Wallraff A and Blais A 2010 Phys. Rev. A 82 043804
[47] Chen M, Tang J, Tang L, Wu H and Xia K 2022 Phys. Rev. Res. 4 033083
[1] Photostability of colloidal single photon emitter in near-infrared regime at room temperature
Si-Yue Jin(靳思玥) and Xing-Sheng Xu(许兴胜). Chin. Phys. B, 2024, 33(3): 036102.
[2] Generation of spectrally uncorrelated biphotons via fiber nonlinear quantum interference
Zhengtong Wei(卫正统), Chuan Qu(瞿川), Tian'an Wu(吴天安), Yuanyuan Li(李媛媛), Bo Li(李博), and Shenghai Zhang(张胜海). Chin. Phys. B, 2023, 32(6): 064202.
[3] Increasing linear flux range of SQUID amplifier using self-feedback effect
Ying-Yu Chen(陈滢宇), Chao-Qun Wang(王超群), Yuan-Xing Xu(徐元星), Yue Zhao(赵越), Li-Liang Ying(应利良), Hang-Xing Xie(谢颃星), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(11): 118501.
[4] Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam
Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳). Chin. Phys. B, 2023, 32(10): 100302.
[5] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[6] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[7] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[8] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[9] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[10] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[11] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[12] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[13] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[14] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[15] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
No Suggested Reading articles found!