|
|
Protected simultaneous quantum remote state preparation scheme by weak and reversal measurements in noisy environments |
Mandal Manoj Kumar†, Choudhury Binayak S.‡, and Samanta Soumen§ |
Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur B. Garden, Howrah 711103, West Bengal, India |
|
|
Abstract We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping (AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.
|
Received: 10 May 2023
Revised: 21 June 2023
Accepted manuscript online: 12 July 2023
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by Indian Institute of Engineering Science and Technology, Shibpur, India. |
Corresponding Authors:
Mandal Manoj Kumar, Choudhury Binayak S., Samanta Soumen
E-mail: manojmandaliiest@gmail.com;binayak@math.iiests.ac.in;s.samanta.math@gmail.com
|
Cite this article:
Mandal Manoj Kumar, Choudhury Binayak S., and Samanta Soumen Protected simultaneous quantum remote state preparation scheme by weak and reversal measurements in noisy environments 2024 Chin. Phys. B 33 020309
|
[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [2] Lo H K 2000 Phys. Rev. A 62 012313 [3] Sadeghi-Zadeh M S, Houshmand M, Aghababa H, Kochakzadeh M H and Zarmehi F 2019 Quantum Inf. Process. 18 353 [4] Liu R J, Bai M Q, Wu F and Zhang Y C 2019 Int. J. Quant. Inf. 17 1950052 [5] Zhou R G and Zhang Y N 2019 Int. J. Theor. Phys. 58 3594 [6] Verma V 2020 Mod. Phys. Lett. A 35 2050333 [7] Zhang W, Li B and Zhang Z 2020 Laser Phys. Lett. 17 125202 [8] Choudhury B S and Samanta S 2019 Phys. Part. Nuclei Lett. 16 206 [9] Zheng Y, Li D, Liu X, Liu M, Zhou J, Yang X, Tan Y and Wang R 2022 Int. J. Theor. Phys. 61 133 [10] Abdelwahab A G, Ghwail S A, Metwally N, Mahran M H and Obada A S F 2023 Int. J. Theor. Phys. 62 66 [11] Wang M and Li H S 2022 Quantum Inf. Process. 21 44 [12] Dai R and Li H S 2022 Int. J. Theor. Phys. 61 187 [13] Jiang C, Wei Y Z and Jiang M 2022 Int. J. Theor. Phys. 61 154 [14] Javed S, Pandey R K, Yadav P S, Prakash R and Prakash R 2023 Int. J. Theor. Phys. 62 11 [15] Bennett C H, Divincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902 [16] Liu J M, Feng X L and Oh C H 2009 EPL 87 30006 [17] Chen Q Q, Xia Y and An N B 2011 Opt. Commun. 284 2617 [18] Chen X B, Ma S Y, Su Y, Zhang R and Yang Y X 2012 Quantum Inf. Process. 11 1653 [19] Li J F, Liu J M and Xu X Y 2015 Quantum Inf. Process. 14 3465 [20] Wei J, Shi L, Zhu Y, Xue Y, Xu Z and Jiang J 2018 Quantum Inf. Process. 17 70 [21] Bich C T, Dat L T, Hop N V and An N B 2018 Quantum Inf. Process. 17 75 [22] Li Y H, Qiao Y, Sang M H and Nie Y Y 2019 Int. J. Theor. Phys. 58 2228 [23] Jiang Y L, Zhou R G, Hao D Y and Hu W W 2021 Int. J. Theor. Phys. 60 3618 [24] Wang M and Li H S 2021 Int. J. Theor. Phys. 60 2662 [25] Verma V 2021 Physica Scripta 96 035105 [26] Banerjee A, Thapliyal K, Shukla C and Pathak A 2018 Quantum Inf. Process. 17 161 [27] Choudhury B S and Samanta S 2022 Int. J. Theor. Phys. 61 14 [28] Choudhury B S, Mandal M K, Samanta S and Dolai B 2023 Quantum Studies: Mathematics and Foundations 10 89 [29] Wang Y J, Bai B M, Zhuo L, Peng J Y and Xiao H L 2012 Chin. Phys. B 21 020304 [30] Terhal B M 2015 Rev. Mod. Phys. 87 307 [31] Bala R, Asthana S and Ravishankar V 2023 Scientific Reports 13 2979 [32] Pan J W, Simon C, Brukner Č and Zeilinger 2001 Nature 410 1067 [33] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309 [34] Korotkov A N and Keane K 2010 Phys. Rev. A 81 040103 [35] Lee J C, Jeong Y C, Kim Y S and Kim Y H 2011 Opt. Express 19 16309 [36] Kim Y S, Lee J, Kwon O and Kim Y H 2012 Nat. Phys. 8 117 [37] Du S J, Peng Y, Feng H R, Han F, Yang L W and Zheng Y J 2020 Chin. Phys. B 29 74202 [38] Sun Q, Al-Amri M, Davidovich L and Zubairy M S 2010 Phys. Rev. A 82 052323 [39] Harraz S, Cong S and Nieto J J 2022 Int. J. Theor. Phys. 61 140 [40] Seida C, Allati A E, Metwally N and Hassouni Y 2022 Physica Scripta 97 025102 [41] Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305 [42] Zhang S L, Jin C H, Guo J S, Shi J H, Zou X B and Guo G C 2016 Chin. Phys. Lett. 33 120302 [43] Xu P, Bao W S, Li H W, Wang Y and Bao H Z 2017 Chin. Phys. Lett. 34 20302 [44] Gu W Y, Zhao S H, Dong C, Wang X Y and Yang D 2019 Acta Phys. Sin. 68 240301 (in Chinese) [45] Li X, Yuan H W, Zhang C M and Wang Q 2020 Chin. Phys. B 29 70303 [46] Gu J, Cao, X Y, Fu Y, He Z W, Yin Z J, Yin H L and Chen Z B 2022 Science Bulletin 67 2167 [47] Xie T M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L and Chen Z B 2022 PRX Quantum 3 020315 [48] Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S and Chen Z B 2023 National Science Rev. 10 nwac228 [49] Grünenfelder F, Boaron A, Resta G V, et al. 2023 Nat. Photon. 17 422 [50] Li W, Zhang L, Tan H et al. 2023 Nat. Photon. 17 416 [51] Sheng Y B and Zhou L 2023 Sci. China Phys. Mech. Astron. 66 260331 [52] Zhou L, Lin J, Jing Y, et al. 2023 Nat. Commun. 14 928 [53] Zhou L and Sheng Y B 2022 Sci. China Phys. Mech. Astron. 65 250311 [54] Liu X, Li Z, Luo D, Huang C, Ma D, Geng M, Wang J, Zhang Z and Wei K 2022 Sci. China Phys. Mech. Astron. 64 120311 [55] Kim Y S, Cho Y W, Ra Y S and Kim Y H 2009 Opt. Express 17 11978 [56] Kumar A, Haddadi S, Pourkarimi M R, Behera B K and Panigrahi P K 2020 Sci. Rep. 10 13608 [57] Anagha M, Mohan A, Muruganandan T, Behera B K and Panigrahi P K 2020 Quantum Inf. Process. 19 147 [58] Harraz S, Cong S and Nieto J J 2022 IEEE Comm. Lett. 26 528 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|