Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020203    DOI: 10.1088/1674-1056/ad0bf4
GENERAL Prev   Next  

MetaPINNs: Predicting soliton and rogue wave of nonlinear PDEs via the improved physics-informed neural networks based on meta-learned optimization

Yanan Guo(郭亚楠)1,2,3,†, Xiaoqun Cao(曹小群)1,2,‡, Junqiang Song(宋君强)1,2, and Hongze Leng(冷洪泽)1
1 College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China;
2 College of Computer, National University of Defense Technology, Changsha 410073, China;
3 Naval Aviation University, Huludao 125001, China
Abstract  Efficiently solving partial differential equations (PDEs) is a long-standing challenge in mathematics and physics research. In recent years, the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations. Among them, physics-informed neural networks (PINNs) are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena. In the field of nonlinear science, solitary waves and rogue waves have been important research topics. In this paper, we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints. In addition, we employ meta-learning optimization to speed up the training process. We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves. We evaluate the accuracy of the prediction results by error analysis. The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs.
Keywords:  physics-informed neural networks      gradient-enhanced loss function      meta-learned optimization      nonlinear science  
Received:  25 September 2023      Revised:  06 November 2023      Accepted manuscript online:  13 November 2023
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 42005003 and 41475094).
Corresponding Authors:  Yanan Guo, Xiaoqun Cao     E-mail:  guoyn14@lzu.edu.cn;caoxiaoqun@nudt.edu.cn

Cite this article: 

Yanan Guo(郭亚楠), Xiaoqun Cao(曹小群), Junqiang Song(宋君强), and Hongze Leng(冷洪泽) MetaPINNs: Predicting soliton and rogue wave of nonlinear PDEs via the improved physics-informed neural networks based on meta-learned optimization 2024 Chin. Phys. B 33 020203

[1] Guo Y, Cao X, Liu B and Peng K 2020 Symmetry 12 893
[2] Li S, Song W, Fang L, Chen Y, Ghamisi P and Benediktsson J A 2019 IEEE Trans. Geosci. Remote Sens. 57 6690
[3] Guo Y, Cao X, Liu B and Gao M 2020 Symmetry 12 1056
[4] Bourilkov D 2019 Int. J. Mod. Phys. A 34 1930019
[5] Choudhary K, DeCost B, Chen C, et al. 2022 NPJ Comput. Mater. 8 59
[6] Davenport F V and Diffenbaugh N S 2021 Geophys. Res. Lett. 48 e2021GL093787
[7] Bryant P, Pozzati G and Elofsson A 2022 Nat. Commun. 13 1
[8] Boussioux L, Zeng C, Guénais T and Bertsimas D 2022 Weather Forecast. 37 817
[9] Dawood M, Asif A and Minhas F U A A 2020 Neural Comput. Appl. 32 9009
[10] Guo Y, Cao X, Liu B and Gao M 2020 Appl. Sci. 10 5917
[11] Sirignano J and Spiliopoulos K 2018 J. Comput. Phys. 375 1339
[12] Guo Y, Cao X and Peng K 2023 Commun. Theor. Phys. 75 095003
[13] van der Meer R, Oosterlee C W and Borovykh A 2022 J. Comput. Appl. Math. 405 113887
[14] Raissi M, Perdikaris P and Karniadakis G E 2019 J. Comput. Phys. 378 686
[15] Haruzi P and Moreno Z 2023 Water Resour. Res. 59 e2023WR034538
[16] Guo Y, Cao X and Peng K 2023 International Joint Conference on Neural Networks (IJCNN) pp. 1-10
[17] Guo Y, Cao X, Peng K, Tian W and Zhou M 2023 International Conference on Intelligent Computing pp. 235-246
[18] Manavi S, Becker T and Fattahi E 2023 Int. Commun. Heat Mass Transfer 142 106662
[19] Miao Z and Chen Y 2023 Physica D 456 133945
[20] Guo Y, Cao X, Song J, Leng H and Peng K 2023 Phys. Fluids 35 106603
[21] Klymak J M and Moum J N 2003 Geophys. Res. Lett. 30
[22] Wazwaz A M 2010 Partial differential equations and solitary waves theory (Berlin: Springer)
[23] Dysthe K, Krogstad H E and Müller P 2008 Annu. Rev. Fluid Mech. 40 287
[24] Müller P, Garrett C and Osborne A 2005 Oceanography 18 66
[25] Petviashvili V I and Pohkotelov O A 2016 Solitary Waves in Plasmas and in the Atmosphere (London: Routledge)
[26] Peng W Q and Chen Y 2022 Physica D 435 133274
[27] Lin S and Chen Y 2022 J. Comput. Phys. 457 111053
[28] Li J and Li B 2022 Chaos Solitons Fractals 164 112712
[29] Tian S, Niu Z and Li B 2023 Nonlinear Dyn. 111 16467
[30] Yu J, Lu L, Meng X and Karniadakis G E 2022 Comput. Methods Appl. Mech. Eng. 393 114823
[31] Tauseef Mohyud-Din S, Yildirim A and Sariaydin S 2011 Int. J. Numer. Methods Heat Fluid Flow 21 272
[32] Parker A 2000 Physica D 137 25
[33] Fibich G 2015 The nonlinear Schrödinger equation Vol. 192 (Berlin: Springer)
[34] Zhang Z, Yang X, Li B, Wazwaz A M and Guo Q 2022 Phys. Lett. A 450 128395
[35] Malomed B 2005 Nonlinear Schrödinger equations
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040207.
No Suggested Reading articles found!