Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 084401    DOI: 10.1088/1674-1056/acc059
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influences of double diffusion upon radiative flow of thin film Maxwell fluid through a stretching channel

Arshad Khan1,†, Ishtiaq Ali2, Musawa Yahya Almusawa3, Taza Gul4, and Wajdi Alghamdi5
1. College of Aeronautical Engineering, National University of Sciences and Technology(NUST), Sector H-12, Islamabad 44000, Pakistan;
2. Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
3. Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia;
4. Department of Mathematics, City University of Science and Information Technology, Peshawar 25000, Pakistan;
5. Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 80261, Saudi Arabia
Abstract  This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel. The nanoparticles of silver and alumina have mixed in the Maxwell fluid (base fluid). Magnetic field influence has been employed to channel in normal direction. Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables. Homotopy analysis method is used for the solution of the resultant equations. In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects, thin film thickness, and unsteadiness factor. Temperature of fluid has grown up with upsurge in Brownian motion, radiation factor, and thermophoresis effects, while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film. Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.
Keywords:  Maxwell fluid flow      magnetohydrodynamic (MHD)      hybrid nano fluid flow      stretching channel      double diffusion      entropy generation      HAM technique  
Received:  02 November 2022      Revised:  04 February 2023      Accepted manuscript online:  02 March 2023
PACS:  44.90.+c (Other topics in heat transfer)  
  47.35.-i (Hydrodynamic waves)  
  05.40.Jc (Brownian motion)  
  47.15.gm (Thin film flows)  
Corresponding Authors:  Arshad Khan     E-mail:  arshad8084@gmail.com

Cite this article: 

Arshad Khan, Ishtiaq Ali, Musawa Yahya Almusawa, Taza Gul, and Wajdi Alghamdi Influences of double diffusion upon radiative flow of thin film Maxwell fluid through a stretching channel 2023 Chin. Phys. B 32 084401

[1] Qasim M, Khan Z H, Lopez R J and Khan W A 2016 Eur. Phys. J. Plus 131 1
[2] Adebayo I, Xie Z, Che Z and Matar O K 2017 Phys.l Rev. E 96 013118
[3] Akkuş Y, Tarman H I, Çetin B and Dursunkaya Z 2017 Int. J. Therm. Sci. 121 237
[4] Dandapat B S, Singh S K and Maity S 2017 Int. J. Mech. Sci. 130 367
[5] Saeed A, Kumam P, Nasir S, Gul T and Kumam W 2021 Sci. Rep. 11 1
[6] Islam S, Khan A, Kumam P, Alrabaiah H, Shah Z, Khan W, Zubair M and Jawad M 2020 Sci. Rep. 10 17823
[7] Nadeem S, Haq R U and Khan Z H 2014 J. Taiwan Inst. Chem. Eng. 45 121
[8] Zainal N A, Nazar R, Naganthran K and Pop I 2021 Appl. Math. Mech. 42 1511
[9] Jawad M, Saeed A, Khan A, Ali I, Alrabaiah, H, Gul T, Bonyah E and Zubair M 2021 AIP Adv. 11 035215
[10] Abdal S, Siddique I, Alrowaili D, Al-Mdallal Q and Hussain S 2022 Sci. Rep. 12 278
[11] Abbasi F M and Shehzad S A 2016 J. Mol. Liq. 220 848
[12] Rashidi S, Esfahani J A and Maskaniyan M 2017 J. Magn. Magn. Mater. 439 358
[13] Turkyilmazoglu M 2022 Zeitschrift für Naturforschung A 77 329
[14] Saleh H and Hashim I 2010 Chin. Phys. Lett. 27 024401
[15] Fan J Y, Feng Y, Lu D, Zhang W C, Hu D Z, Yang Y E, Tang R J, Hong B, Ling L S, Wang C X, Ma C L and Zhu Y 2019 Acta Phys. Sin. 68 107501 (in Chinese)
[16] Uddin I, Ullah I, Raja M A Z, Shoaib M, Islam S, Zobaer M S, Nisar K S, Saleel C A and Alshahrani S 2021 Sci. Rep. 11 19239
[17] Hosseinzadeh K, Mardani M R, Salehi S, Paikar M and Ganji D D 2021 Pramana 95 57
[18] Guedri K, Khan A, Gul T, Mukhtar S, Alghamdi W, Yassen M F and Tag Eldin E 2022 ACS Omega 7 33432
[19] Choi S U and Eastman J A 1995 "Enhancing thermal conductivity of fluids with nanoparticles" (No. ANL/MSD/CP-84938; CONF-951135-29), Argonne National Laboratory (ANL), Argonne, IL (USA)
[20] Najafabadi M F, TalebiRostami H, Hosseinzadeh K and Ganji D D 2022 Theor. Appl. Mech. Lett. 12 100356
[21] Ghadikolaei S S, Hosseinzadeh K, Ganji D D and Jafari B 2018 Case Studies in Thermal Engineering 12 176
[22] Shah Z, Khan A, Khan W, Alam M K, Islam S, Kumam P and Thounthong P 2020 Computer Methods and Programs in Biomedicine 186 105197
[23] Khan A, Saeed A, Gul T, Mukhtar S, Ali I and Jawad M 2021 Physica Scripta 96 045206
[24] Bilal M, Ahmed A E S, El-Nabulsi R A, Ahammad N A, Alharbi K A M, Elkotb M A, Anukool W and Sa Z A 2022 Micromachines 13 874
[25] Rajput N S, Shukla D D, Ishan L and Madhav K S 2021 Materials Today: Proceedings 47 6508
[26] Ullah H, Hayat T, Ahmad S and Alhodaly M S 2021 Int. Commun. Heat Mass Transfer 122 105111
[27] Butt A S and Ali A 2013 Chin. Phys. Lett. 30 024701
[28] Cheng X T and Liang X G 2013 Chin. Phys. B 22 080509
[29] Khan A, Shah Z, Alzahrani E and Islam S 2020 Int. Commun. Heat Mass Transfer 119 104979
[30] Liao S J 1999 Int. J. Nonlinear Mech. 34 759
[31] Gul T, Mukhtar S, Alghamdi W, Ali I, Saeed A and Kumam P 2022 ACS Omega 7 33365
[32] Khan A, Hassan B, Ashraf E E and Shah S Y A 2022 Heat Transfer 51 1170
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[3] Role of entropy generation minimization in thermal optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505.
[4] Analyses of an air conditioning system with entropy generation minimization and entransy theory
Yan-Qiu Wu(吴艳秋), Li Cai(蔡黎), Hong-Juan Wu(吴鸿娟). Chin. Phys. B, 2016, 25(6): 060507.
[5] Output power analyses of an endoreversible Carnot heat engine with irreversible heat transfer processes based on generalized heat transfer law
Wu Yan-Qiu (吴艳秋). Chin. Phys. B, 2015, 24(7): 070506.
[6] Optimization of combined endoreversible Carnot heat engines with different objectives
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2015, 24(6): 060510.
[7] Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 080509.
[8] A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization
Zhou Bing (周兵), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 084401.
[9] Analyses of the endoreversible Carnot cycle with entropy theory and entransy theory
Wang Wen-Hua (王文华), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(11): 110506.
[10] Applicability of minimum entropy generation methodto optimizing thermodynamic cycles
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(1): 010508.
[11] Role of on-board discharge in shock wave drag reduction and plasma cloaking
Qiu Xiao-Ming(邱孝明), Tang De-Li (唐德礼), Sun Ai-Ping(孙爱萍), Liu Wan-Dong(刘万东), and Zeng Xue-Jun (曾学军). Chin. Phys. B, 2007, 16(1): 186-192.
No Suggested Reading articles found!