Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 010201    DOI: 10.1088/1674-1056/acd686
GENERAL   Next  

Efficient method to calculate the eigenvalues of the Zakharov—Shabat system

Shikun Cui(崔世坤)1 and Zhen Wang(王振)2,†
1 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China;
2 School of Mathematical Sciences, Beihang University, Beijing 100191, China
Abstract  A numerical method is proposed to calculate the eigenvalues of the Zakharov—Shabat system based on Chebyshev polynomials. A mapping in the form of (ax) is constructed according to the asymptotic of the potential function for the Zakharov—Shabat eigenvalue problem. The mapping can distribute Chebyshev nodes very well considering the gradient for the potential function. Using Chebyshev polynomials, (ax) mapping, and Chebyshev nodes, the Zakharov—Shabat eigenvalue problem is transformed into a matrix eigenvalue problem. This method has good convergence for the Satsuma—Yajima potential and the convergence rate is faster than the Fourier collocation method. This method is not only suitable for simple potential functions but also converges quickly for a complex Y-shape potential. It can also be further extended to other linear eigenvalue problems.
Keywords:  Zakharov—Shabat system      eigenvalue      numerical method      Chebyshev polynomials  
Received:  21 February 2023      Revised:  17 May 2023      Accepted manuscript online:  18 May 2023
PACS:  02.30.Ik (Integrable systems)  
  02.30.Rz (Integral equations)  
  02.70.Jn (Collocation methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52171251, U2106225, and 52231011) and Dalian Science and Technology Innovation Fund (Grant No. 2022JJ12GX036).
Corresponding Authors:  Zhen Wang     E-mail:  wangzmath@163.com

Cite this article: 

Shikun Cui(崔世坤) and Zhen Wang(王振) Efficient method to calculate the eigenvalues of the Zakharov—Shabat system 2024 Chin. Phys. B 33 010201

[1] Manakov S V 1973 Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 65 505
[2] Zakharov V E 1972 Sov. Phys. JETP 35 908
[3] Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B 29 100501
[4] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[5] Gardner C S, Greene J M, Kruskal M D and Miura R M 2008 Bull. Amer. Math. Soc. 46 1
[8] Boffetta G and Osborne A 1992 J. Comput. Phys. 102 252
[9] Bronski J C 1996 Physica D 97 376
[10] Burtsev S, Camassa R and Timofeyev I 1998 J. Comput. Phys. 147 166
[11] Deconinck B and Kutz J N 2006 J. Comput. Phys. 219 296
[12] Medvedev S, Vaseva I, Chekhovskoy I and Fedoruk M 2019 Opt. Lett. 44 2264
[13] Vasylchenkova A, Prilepsky J E, Shepelsky D and Chattopadhyay A. 2019 Commun. Nonlinear Sci. Numer. Simul. 68 347
[14] Yousefi M I and Kschischang F R 2014 IEEE Trans. Inf. Theory 60 4329
[15] Sezer M and Kaynak M 1996 Int. J. Math. Educ. Sci. Technol. 27 607
[16] Parlett B N 2000 Comput. Sci. Eng. 2 38
[17] Satsuma J and Yajima N 1974 Prog. Theor. Phys. 55 284
[18] Bai D and Wang J 2012 Commun. Nonlinear Sci. Numer. Simul 17 1201
[19] Yang J K 2010 Nonlinear waves in integrable and nonintegrable systems (Society for Industrial and Applied Mathematics) pp. 45-50
[1] Real eigenvalues determined by recursion of eigenstates
Tong Liu(刘通) and Youguo Wang(王友国). Chin. Phys. B, 2024, 33(3): 030303.
[2] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[3] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[4] Delta-Davidson method for interior eigenproblem in many-spin systems
Haoyu Guan(关浩宇) and Wenxian Zhang(张文献). Chin. Phys. B, 2021, 30(3): 030205.
[5] Numerical simulations of strong-field processes in momentum space
Yan Xu(徐彦), Xue-Bin Bian(卞学滨). Chin. Phys. B, 2020, 29(2): 023202.
[6] Tripartite continuous-variable entanglement of NOPA system
Chao-Ying Zhao(赵超樱), Cheng-Mei Zhang(张成梅). Chin. Phys. B, 2018, 27(8): 084204.
[7] Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms
Tang-Kun Liu(刘堂昆), Kang-Long Zhang(张康隆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2016, 25(7): 070304.
[8] Second-order two-scale analysis and numerical algorithms for the hyperbolic-parabolic equations with rapidly oscillating coefficients
Dong Hao (董灏), Nie Yu-Feng (聂玉峰), Cui Jun-Zhi (崔俊芝), Wu Ya-Tao (武亚涛). Chin. Phys. B, 2015, 24(9): 090204.
[9] Dynamics of a ± 1/2 defect pair in a confined geometry: A thin hybrid aligned nematic cell
Lu Li-Xia (路丽霞), Zhang Zhi-Dong (张志东). Chin. Phys. B, 2015, 24(2): 026102.
[10] Three-dimensional simulation method of multipactor in microwave components for high-power space application
Li Yun (李韵), Cui Wan-Zhao (崔万照), Zhang Na (张娜), Wang Xin-Bo (王新波), Wang Hong-Guang (王洪广), Li Yong-Dong (李永东), Zhang Jian-Feng (张剑锋). Chin. Phys. B, 2014, 23(4): 048402.
[11] A secure key agreement protocol based on chaotic maps
Wang Xing-Yuan (王兴元), Luan Da-Peng (栾大朋). Chin. Phys. B, 2013, 22(11): 110503.
[12] Relativistic treatment of the spin-zero particles subject to the second Pöschl–Teller-like potential
Ekele V. Aguda, Amos S. Idowu. Chin. Phys. B, 2013, 22(10): 100303.
[13] The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential
H. Hassanabadi, M. Kamali. Chin. Phys. B, 2013, 22(10): 100304.
[14] New WKB method in supersymmetry quantum mechanics
Tian Gui-Hua(田贵花) . Chin. Phys. B, 2012, 21(4): 040301.
[15] Analytic solutions of the ground and excited states of the spin-weighted spheroidal equation in the case of s=2
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040401.
No Suggested Reading articles found!