Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100303    DOI: 10.1088/1674-1056/22/10/100303
GENERAL Prev   Next  

Relativistic treatment of the spin-zero particles subject to the second Pöschl–Teller-like potential

Ekele V. Agudaa, Amos S. Idowub
a Department of Mathematics, Ahmadu Bello University Zaria, Nigeria;
b Department of Mathematics, University of Ilorin, Nigeria
Abstract  The three-dimensional Klein-Gordon equation is solved for the case of equal vector and scalar second Pöschl–Teller potential by proper approximation of the centrifugal term within the framework of the asymptotic iteration method. Energy eigenvalues and the corresponding wave function are obtained analytically. Eigenvalues are computed numerically for some values of n and l. It is found that the results are in good agreement with the findings of other methods for short-range potential.
Keywords:  second Pöschl–Teller potential      asymptotic iteration      eigenvalues      eigenfunction  
Received:  29 January 2013      Revised:  29 March 2013      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
Corresponding Authors:  Ekele V. Aguda, Amos S. Idowu     E-mail:  vincentekele@yahoo.com;sesan@unilorin.edu.ng

Cite this article: 

Ekele V. Aguda, Amos S. Idowu Relativistic treatment of the spin-zero particles subject to the second Pöschl–Teller-like potential 2013 Chin. Phys. B 22 100303

[1] Qiang W C and Dong S H 2008 Phys. Lett. A 372 4789
[2] Bagrov V G and Gitman D M 1990 Exact Solution of Relativistic Wave Equations (Dordrecht: Kluwer Academic)
[3] Miranda M G, Sun G H and Dong S H 2010 Int. J. Mod. Phys. E 19 123
[4] Dong S H, Qiang W C and Gracía-Ravelo J 2008 J. Int. Mod. Phys. A 23 1537
[5] Dominguez-Adame F 1989 Phys. Lett. A 136 175
[6] Chen G, Chen Z D and Lou Z M 2004 Phys. Lett. A 331 374
[7] Simsek M and Eğrifes H 2004 J. Phys. A: Math. Gen. 37 4379
[8] Lu F L, Chen C Y and Sun D S 2005 Chin. Phys. 14 463
[9] Yasuk F and Durmus A 2008 Phys. Scr. 77 015005
[10] Dong S H and Lozada-Cassou M 2006 Phys. Scr. 74 285
[11] Chen C Y 2005 Phys. Lett. A 339 283
[12] Chen Z D and Chen G 2005 Acta Phys. Sin. 54 2524 (in Chinese).
[13] Ni Z X 1999 Chin. Phys. 8 8
[14] Kocak M 2007 Chin. Phys. Lett. 24 315
[15] Ma Z Q, Dong S H, Gu X Y, Yu J and Lozada-Cassou M 2004 Int. J. Mod. Phys. E 13 597
[16] Dong S H 2011 Commun. Theor. Phys. 55 969
[17] Falaye B J 2012 Few-Body System 53 563
[18] Falaye B J 2012 Cent. Eur. J. Phys. 10 960
[19] Durmus A and Yasuk F 2007 J. Chem. Phys. 126 074108
[20] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math Gen. 36 11807
[21] Ciftci H, Hall R L and Saad N 2005 Phys. Lett. A 340 388
[22] Falaye B J 2012 J. Math. Phys. 53 082107
[23] Yahya Y A, Oyewumi K J, Akoshile C O and Ibrahim T T 2010 J. Vec. Rel. 5 27
[24] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2012 J. Math. Phys. 53 022104
[25] Ikhdair S M and Sever R 2009 Ann. Phys. (Berlin) 18 189
[26] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)
[27] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704
[28] Qiang W C and Dong S H 2010 Europhys. Lett. 89 10003
[29] Ma Z Q, Gonzalez-Cisneros A, Xu BWand Dong S H 2007 Phys. Lett. A 371 180
[30] Dong S H and Gonzalez-Cisneros A 2008 Ann. Phys. 323 1136
[31] Serrano F A, Gu X Y and Dong S H 2010 J. Math. Phys. 51 082103
[32] Serrano F A, CruzIrisson M and Dong S H 2011 Ann. Phys. (Berlin) 523 771
[33] Qiang W C and Dong S H 2007 Phys. Lett. A 368 13
[34] Dong S H 2009 Int J. Quantum Chem. 109 701
[35] Gu X Y and Dong S H 2008 Phys. Lett. A 372 1972
[36] Oyewumi K J, Ibbrahim T T, Ajibola S O and Ajadi D A 2010 J. Vec. Rel. 5 19
[37] Wei G F, Dong S H and Bezarra V B 2009 J. Int. Mod. Phys. A 24 161
[38] Barakat T 2006 J. Phys. A: Math. Gen. 36 823
[39] Fernandez F M 2004 J. Phys. A: Math. Gen. 37 6173
[40] Barakat T 2005 Phys. Lett. A 344 411
[41] Falaye B J 2012 Few-Body Syst. 53 557
[42] Ikhdair S M, Falaye B J and Hamzavi M 2013 Chin. Phys. Lett. 30 020305
[43] Falaye B J 2012 Can J. Phys. 90 1259
[44] Bayrak O, Boztosun I and Ciftci H 2007 Int. J. Quantum Chem. 107 540
[45] Falaye B J, Oyewumi K J, Ibrahim T T, Punyasena M A and Onate C A 2013 Can. J. Phys. 91 98
[46] Ikhdair S M and Falaye B J 2013 Phys. Scr. 87 035002
[47] Falaye B J and Ikhdair S M 2013 Chin. Phys. B 22 060305
[48] Champion B, Hall R L and Saad N 2008 J. Int. Mod. Phys. A 23 1405
[49] Bayrak O and Boztosun I 2007 Int. J. Quantum Chem. 107 1040 100303-6
[1] Tripartite continuous-variable entanglement of NOPA system
Chao-Ying Zhao(赵超樱), Cheng-Mei Zhang(张成梅). Chin. Phys. B, 2018, 27(8): 084204.
[2] Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential
Ahmet Taş, Ali Havare. Chin. Phys. B, 2017, 26(10): 100301.
[3] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[4] Complete eigenmode analysis of a ladder-type multiple-gap resonant cavity
Zhang Chang-Qing (张长青), Ruan Cun-Jun (阮存军), Zhao Ding (赵鼎), Wang Shu-Zhong (王树忠), Yang Xiu-Dong (杨修东). Chin. Phys. B, 2014, 23(8): 088401.
[5] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[6] Solutions of the Duffin Kemmer Petiau equation in the presence of Hulthén potential in (1+2) dimensions for unity spin particles using the asymptotic iteration method
Z. Molaee, M. K. Bahar, F. Yasuk, H. Hassanabadi. Chin. Phys. B, 2013, 22(6): 060306.
[7] The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential
H. Hassanabadi, M. Kamali. Chin. Phys. B, 2013, 22(10): 100304.
[8] Bound states of the Dirac equation with position-dependent mass for the Eckart potential
Bahar M. K., Yasuk F.. Chin. Phys. B, 2013, 22(1): 010301.
[9] New WKB method in supersymmetry quantum mechanics
Tian Gui-Hua(田贵花) . Chin. Phys. B, 2012, 21(4): 040301.
[10] Analytic solutions of the ground and excited states of the spin-weighted spheroidal equation in the case of s=2
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040401.
[11] Verification of the spin-weighted spheroidal equation in the case of s=1
Zhang Qing(张晴), Tian Gui-Hua(田贵花), Sun Yue(孙越), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040402.
[12] Asymptotic iteration approach to supersymmetric bistable potentials
H. Ciftci, O. őzer, and P. Roy . Chin. Phys. B, 2012, 21(1): 010303.
[13] Spin-weighted spheroidal equation in the case of s=1
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟). Chin. Phys. B, 2011, 20(6): 061101.
[14] Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies
Tang Wen-Lin (唐文林), Tian Gui-Hua (田贵花). Chin. Phys. B, 2011, 20(5): 050301.
[15] Completeness of eigenfunction systems for the product of two symmetric operator matrices and its application in elasticity
Qi Gao-Wa(齐高娃), Hou Guo-Lin(侯国林), and Alatancang(阿拉坦仓) . Chin. Phys. B, 2011, 20(12): 124601.
No Suggested Reading articles found!