Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110503    DOI: 10.1088/1674-1056/22/11/110503
GENERAL Prev   Next  

A secure key agreement protocol based on chaotic maps

Wang Xing-Yuan (王兴元), Luan Da-Peng (栾大朋)
Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  To guarantee the security of communication in the public channel, many key agreement protocols have been proposed. Recently, Gong et al. proposed a key agreement protocol based on chaotic maps with password sharing. In this paper, Gong et al.’s protocol is analyzed, and we find that this protocol exhibits key management issues and potential security problems. Furthermore, the paper presents a new key agreement protocol based on enhanced Chebyshev polynomials to overcome these problems. Through our analysis, our key agreement protocol not only provides mutual authentication and the ability to resist a variety of common attacks, but also solve the problems of key management and security issues existing in Gong et al.’s protocol.
Keywords:  chaos      Chebyshev polynomials      key agreement protocol      security  
Received:  06 March 2013      Revised:  22 May 2013      Accepted manuscript online: 
PACS:  05.45.Vx (Communication using chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61370145, 61173183, and 60973152), the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014), the Program for Excellent Talents in Universities of Liaoning Province, China (Grant No. LR2012003), the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165), and the Fundamental Research Funds for the Central Universities of China (Grant No. DUT12JB06).
Corresponding Authors:  Wang Xing-Yuan     E-mail:  wangxy@dlut.edu.cn

Cite this article: 

Wang Xing-Yuan (王兴元), Luan Da-Peng (栾大朋) A secure key agreement protocol based on chaotic maps 2013 Chin. Phys. B 22 110503

[1] Liu B and Peng J 2004 Nonlinear Dynamics (Beijing: High Education Press) p. 13
[2] Mao Y B, Chen G Y and Lian S G 2004 Int. J. Bifurcat. Chaos 14 3613
[3] Xiang T, Liao X F, Tang G P, Chen Y and Wong K 2006 Phys. Lett. A 349 109
[4] Wang X Y and Jin C Q 2011 Opt. Commun. 285 412
[5] Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506
[6] Chen G, Chen Y and Liao X F 2007 Chaos Soliton. Fract. 31 571
[7] Xiao D, Liao X F and Deng S J 2005 Chaos Soliton. Fract. 24 65
[8] Menezes A, van Oorschot P and Vanstone S 1997 Handbook of Applied Cryptography (Boca Raton: CRC Press) p. 1
[9] Kocarev L and Tasev Z 2003 Proceedings of the 2003 International Symposium on Circuits and Systems 3 28
[10] Bergamo P, D’Arco P, Santis A and Kocarev L 2005 IEEE Tran. Circuits-I 52 1382
[11] Bose R 2005 Phys. Rev. Lett. 95 098702
[12] Wang K, Pei W J, Zou L H, Cheung Y and He Z Y 2006 Phys. Lett. A 360 259
[13] Zhang L H 2008 Chaos Soliton. Fract. 37 669
[14] Xiao D, Liao X F and Deng S J 2007 Inform. Sci. 177 1136
[15] Han S 2008 Chaos Soliton. Fract. 38 764
[16] Xiang T, Wong K W and Liao X F 2009 Chaos Soliton. Fract. 40 672
[17] Chang E and Han S 2006 CBS-IS-2006 Technical Report (Curtin University of Technology) 1
[18] Han S and Chang E 2009 Chaos Soliton. Fract. 39 1283
[19] Yoon E J and Yoo K Y 2008 Replay Attacks on Han et al.’s Chaotic Map Based Key Agreement Protocol Using Nonce (Berlin: Springer) p. 533
[20] Tseng H R, Jan R H and Yang W 2009 IEEE International Conference on Communications (Dresden:) p. 1
[21] Niu Y J and Wang X Y 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1986
[22] Xue K P and Hong P L 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2969
[23] Yoon E J 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2735
[24] Lee C C, Chen C L, Wu C Y and Huang S Y 2012 Nonlinear Dyn. 69 79
[25] Gong P, Li P and Shi W B A 2012 Nonlinear Dyn. 70 2401
[26] Schneier B 1996 Applied Cryptography: Protocol, Algorithms and Source Code in C (2nd edn.) (New York: John Wiley & Sons) p. 1
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Experimental study on age and gender differences in microscopic movement characteristics of students
Jiayue Wang(王嘉悦), Maik Boltes, Armin Seyfried, Antoine Tordeux, Jun Zhang(张俊), and Wenguo Weng(翁文国). Chin. Phys. B, 2021, 30(9): 098902.
[13] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[14] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[15] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
No Suggested Reading articles found!