Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114401    DOI: 10.1088/1674-1056/acdac0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Preparation and cooling performance analysis of double-layer radiative cooling hybrid coatings with TiO2/SiO2/Si3N4 micron particles

Yang-Chun Zhao(赵洋春) and Yong-Min Zhou(周勇敏)
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
Abstract  Passive daytime radiative cooling is achieved by radiating heat into outer space through electromagnetic waves without energy consumption. A scalable double-layer coating with a mixture of TiO2, SiO2, and Si3N4 micron particles for radiative cooling is proposed in this study. The finite-difference time-domain algorithm is used to analyze the influence of particle size and coating thickness on radiative cooling performance. The results of the simulation show that the particle size of 3 μ can give the best cooling performance, and the coating thickness should be above 25 μ m for SiO2 coating. Meanwhile, the mixture of SiO2 and Si3N4 significantly improves the overall emissivity. Through sample preparation and characterization, the mixture coating with a 1:1 ratio addition on an Al substrate exhibits high reflectivity with a value of 87.6% in the solar spectrum, and an average emissivity of 92% in the infrared region (2.5 μ m-15 μ m), which can be attributed to the synergy among the optical properties of the material. Both coatings can theoretically be cooled by about 8 °C during the day and about 21 °C at nighttime with hc=4 W·m-2·K-1. Furthermore, even considering the significant conduction and convection exchanges, the cooling effect persists. Outdoor experimental results show that the temperature of the double-layer radiative cooling coating is always lower than the ambient temperature under direct sunlight during the day, and can be cooled by about 5 °C on average, while lower than the temperature of the aluminum film by almost 12 °C.
Keywords:  radiative cooling      coatings      thermal radiation      infrared emissivity  
Received:  03 March 2023      Revised:  18 May 2023      Accepted manuscript online:  02 June 2023
PACS:  44.40.+a (Thermal radiation)  
  42.79.Wc (Optical coatings)  
  03.65.Nk (Scattering theory)  
Corresponding Authors:  Yong-Min Zhou     E-mail:  yongminzhou@njtech.edu.cn

Cite this article: 

Yang-Chun Zhao(赵洋春) and Yong-Min Zhou(周勇敏) Preparation and cooling performance analysis of double-layer radiative cooling hybrid coatings with TiO2/SiO2/Si3N4 micron particles 2023 Chin. Phys. B 32 114401

[1] Guo C L, Liu C, Jiao S K, Wang R S and Rao Z H 2020 Appl. Therm. Eng. 173 115207
[2] Zhou Y K, Zheng S Q and Zhang G Q 2020 Energy 192 116608
[3] Bhatia B, Leroy A, Shen Y, Zhao L, Gianello M, Li D, Gu T, Hu J, Soljačić M and Wang E N 2018 Nat. Commun. 9 5001
[4] Mandal J, Fu Y, Overvig A C, Jia M, Sun K, Shi N N, Zhou H, Xiao X, Yu N and Yang Y 2018 Science 362 315
[5] Miyazaki H, Okada K, Jinno K and Ota T 2016 J. Ceram. Soc. Jpn. 124 1185
[6] Granqvist C G and Hjortsberg A 1981 J. Appl. Phys. 52 4205
[7] Gentle A R and Smith G B 2010 Nano Lett. 10 373
[8] Miyazaki H, Yoshida S, Sato Y, Suzuki H and Ota T 2013 J. Ceram. Soc. Jpn. 121 242
[9] Lushiku E M, Hjortsberg A and Granqvist C G 1982 J. Appl. Phys. 53 5526
[10] Lushiku E M and Granqvist C G 1984 Appl. Opt. 23 1835
[11] Harrison A W and Walton M R 1978 Sol. Energy 20 185
[12] NilssonI T M J, Niklasson G A and Granqvist C G 1992 Sol. Energ. Mater. Sol. Cells 28 175
[13] Nilsson T M J and Niklasson G A 1995 Sol. Energ. Mater. Sol. Cells 37 93
[14] Bao H, Yan C, Wang B X, Fang X, Zhao C Y and Ruan X L 2017 Sol. Energ. Mater. Sol. Cells 168 78
[15] Huang Z F and Ruan X L 2017 Int. J. Heat Mass Transfer 104 890
[16] Peoples J, Li X Y, Lv Y B, Qiu J, Huang Z F and Ruan X L 2019 Int. J. Heat Mass Transfer 131 487
[17] Xu Z, Li N, Liu D, Huang X, Wang J, Wu W, Zhang H, Liu H, Zhang Z and Zhong M 2018 Sol. Energ. Mater. Sol. Cells 185 536
[18] Diatezua D M, Thiry P A, Dereux A and Caudano R 1996 Sol. Energ. Mater. Sol. Cells 40 253
[19] Zhu L, Raman A and Fan S 2013 Appl. Phys. Lett. 103 223902
[20] Zhu L X, Raman A, Wang K X, Anoma M A and Fan S H 2014 Optica 1 32
[21] Raman A P, Anoma M A, Zhu L, Rephaeli E and Fan S 2014 Nature 515 540
[22] Hossain M M, Jia B H and Gu M 2015 Adv. Opt. Mater. 3 1047
[23] Wu J Y, Gong Y Z, Huang P R, Ma G J and Dai Q F 2017 Chin. Phys. B 26 104201
[24] Huang J G, Xuan Y M and Li Q 2014 Chin. Phys. Lett. 31 094207
[25] Tang H J, Zhou Z H, Jiao S F, Zhang Y F, Li S, Zhang D B, Zhang J, Liu J W and Zhao D L 2022 Sol. Energ. Mater. Sol. Cells 235 111498
[26] Gentle A R and Smith G B 2016 Sol. Energ. Mater. Sol. Cells 150 39
[27] Smith G B, Gentle A, Swift P, Earp A and Mronga N 2003 Sol. Energ. Mater. Sol. Cells 79 163
[28] Bathgate S N and Bosi S G 2011 Sol. Energ. Mater. Sol. Cells 95 2778
[29] Dyachenko P N, Do Rosário J J, Leib E W, Petrov A Y, Kubrin R, Schneider G A, Weller H, Vossmeyer T and Eich M 2014 ACS Photon. 1 1127
[30] Chae D, Lim H, So S, Son S, Ju S, Kim W, Rho J and Lee H 2021 ACS Appl. Mater. Inter. 13 21119
[31] Vargas W E 2000 J. Appl. Phys. 88 4079
[32] Palik E D 1985 Handbook of Optical Conctants of Solids (San Diego:Academic Press) pp. 719-772
[33] Yao H W, Wang X X, Yin H Y, Jia Y L, Gao Y, Wang J Q and Fan C Z 2021 Chin. Phys. B 30 064214
[34] Meng S, Long L S, Wu Z X, Denisuk N, Yang Y, Wang L P, Cao F and Zhu Y G 2020 Sol. Energ. Mater. Sol. Cells 208 110393
[35] Song X H, Gao Y F and Zhang P 2022 J. Mater. Chem. A 10 22166
[36] Duffie J A and Beckman W A 2013 Solar Engineering of Thermal Processes, fourth edn. (New Jersey:John Wiley & Sons Inc) p. 164
[37] Zhang Y L and Yu J 2021 ACS Appl. Nano Mater. 4 11260
[1] Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization
Shenshen Yan(闫申申), Yan Liu(刘岩), Zi Wang(王子), Xiaohua Lan(兰晓华), Yi Wang(汪毅), and Jie Ren(任捷). Chin. Phys. B, 2023, 32(5): 057802.
[2] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[3] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[4] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[5] Infrared cooling properties of cordierite
Si-Heng Chen(陈思衡), Xiao-Xiong Wang(王晓雄), Guang-Di Nie(乜广弟), Qi Liu(刘奇), Jin-Xia Sui(隋金霞), Chao Song(宋超), Jian-Wei Zhu(朱建伟), Jie Fu(付洁), Jun-Cheng Zhang(张君诚), Xu Yan(闫旭), Yun-Ze Long(龙云泽). Chin. Phys. B, 2019, 28(6): 064401.
[6] Accuracy design of ultra-low residual reflection coatingsfor laser optics
Huasong Liu(刘华松), Xiao Yang(杨霄), Lishuan Wang(王利栓), Hongfei Jiao(焦宏飞), Yiqin Ji(季一勤), Feng Zhang(张锋), D an Liu(刘丹丹), Chenghui Jiang(姜承慧), Yugang Jiang(姜玉刚), Deying Chen(陈德应). Chin. Phys. B, 2017, 26(7): 077801.
[7] Fabrication of broadband antireflection coatings using broadband optical monitoring mixed with time monitoring
Qi-Peng Lv(吕起鹏), Song-Wen Deng(邓淞文), Shao-Qian Zhang(张绍骞), Fa-Quan Gong(公发全), Gang Li(李刚). Chin. Phys. B, 2017, 26(5): 057801.
[8] Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure
Jia-Ye Wu(吴嘉野), Yuan-Zhi Gong(龚远志), Pei-Ran Huang(黄培然), Gen-Jun Ma(马根骏), Qiao-Feng Dai(戴峭峰). Chin. Phys. B, 2017, 26(10): 104201.
[9] Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions
Tasawar Hayat, Ikram Ullah, Taseer Muhammad, Ahmed Alsaedi, Sabir Ali Shehzad. Chin. Phys. B, 2016, 25(7): 074701.
[10] Room temperature direct-bandgap electroluminescence from a horizontal Ge ridge waveguide on Si
Chao He(何超), Zhi Liu(刘智), Bu-Wen Cheng(成步文). Chin. Phys. B, 2016, 25(12): 126104.
[11] Spectral enhancement of thermal radiation by laser fabricating grating structure on nickel surface
Liu Song (刘嵩), Liu Shi-Bing (刘世炳). Chin. Phys. B, 2015, 24(5): 054401.
[12] A thin radar-infrared stealth-compatible structure:Design, fabrication, and characterization
Tian Hao (田浩), Liu Hai-Tao (刘海韬), Cheng Hai-Feng (程海峰). Chin. Phys. B, 2014, 23(2): 025201.
[13] MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation
Swati Mukhopadhyay, Iswar Ch, ra Moindal, Tasawar Hayat. Chin. Phys. B, 2014, 23(10): 104701.
[14] Dual solutions in boundary layer flow of a moving fluid over a moving permeable surface in presence of prescribed surface temperature and thermal radiation
Swati Mukhopadhyay. Chin. Phys. B, 2014, 23(1): 014702.
[15] A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization
Zhou Bing (周兵), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 084401.
No Suggested Reading articles found!