ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Infrared cooling properties of cordierite |
Si-Heng Chen(陈思衡)1, Xiao-Xiong Wang(王晓雄)1, Guang-Di Nie(乜广弟)2, Qi Liu(刘奇)1, Jin-Xia Sui(隋金霞)1, Chao Song(宋超)1, Jian-Wei Zhu(朱建伟)1, Jie Fu(付洁)1, Jun-Cheng Zhang(张君诚)1, Xu Yan(闫旭)2, Yun-Ze Long(龙云泽)1 |
1 College of Physics, Qingdao University, Qingdao 266071, China;
2 College of Textiles and Clothing, Qingdao University, Qingdao 266071, China |
|
|
Abstract Cordierite (Mg2Al4Si5O18) is known for its good thermal shock resistance and it is widely used to improve thermal shock properties of materials. We found that cordierite has good infrared heat dissipation performance. This performance provides an additional means of heat dissipation to assist in the cooling of the metal surface. Spectroscopic tests show that cordierite reflects sunlight in the visible range and emits infrared in the far infrared range, making it potential candidate as an infrared radiative cooling material for daytime use.
|
Received: 27 December 2018
Revised: 20 February 2019
Accepted manuscript online:
|
PACS:
|
44.40.+a
|
(Thermal radiation)
|
|
44.25.+f
|
(Natural convection)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51673103 and 11774189), the Shandong Provincial Key Research and Development Plan, China (Grant No. 2016GGX102011), and the Postdoctoral Scientific Research Foundation of Qingdao City, China (Grant No. 2016014). |
Corresponding Authors:
Yun-Ze Long
E-mail: yunze.long@163.com,yunze.long@qdu.edu.cn
|
Cite this article:
Si-Heng Chen(陈思衡), Xiao-Xiong Wang(王晓雄), Guang-Di Nie(乜广弟), Qi Liu(刘奇), Jin-Xia Sui(隋金霞), Chao Song(宋超), Jian-Wei Zhu(朱建伟), Jie Fu(付洁), Jun-Cheng Zhang(张君诚), Xu Yan(闫旭), Yun-Ze Long(龙云泽) Infrared cooling properties of cordierite 2019 Chin. Phys. B 28 064401
|
[1] |
Gentle A R, Aguilar J L C and Smith G B 2011 Sol. Energy Mater. Sol. Cells 95 3207
|
[2] |
Samuel D G L, Nagendra S M S and Maiya M P 2013 Build. Environ. 66 54
|
[3] |
Al-Obaidi K M, Ismail M and Abdul Rahman A M 2014 Front. Architect. Res. 3 283
|
[4] |
Rephaeli E, Rephaeli A and Fan S 2013 Nano Lett. 13 1457
|
[5] |
Hossain M M, Jia B and Gu M 2015 Adv. Opt. Mater. 3 1047
|
[6] |
Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V and Troise G 1975 Sol. Energy 17 83
|
[7] |
Johnson T E 1975 Sol. Energy 17 173
|
[8] |
Bartoli B, Catalanotti S, Coluzzi B, Cuomo V, Silvestrini V and Troise G 1977 Appl. Energy 3 267
|
[9] |
Michell D and Biggs K L 1979 Appl. Energy 5 263
|
[10] |
Harrison A W and Walton M R 1978 Sol. Energy 20 185
|
[11] |
Granqvist C G 1981 Appl. Opt. 20 2606
|
[12] |
Granqvist C G and Hjortsberg A 1981 J. Appl. Phys. 52 4205
|
[13] |
Hjortsberg C G and Hjortsberg A 1980 Appl. Phys. Lett. 36 139
|
[14] |
Addeo A, Nicolais L, Romeo G, Bartoli B, Coluzzi B and Silvestrini V 1980 Sol. Energy 24 93
|
[15] |
Nilsson T M J and Niklasson G A 1995 Sol. Energy Mater. Sol. Cells 37 93
|
[16] |
NilssonT M J, Niklasson G A and Granqvist C G 1992 Sol. Energy Mater. Sol. Cells 28 175
|
[17] |
RamanA P, Anoma M A, Zhu L, Rephaeli E and Fan S 2014 Nature 515 540
|
[18] |
Gentle A R and Smith G B 2015 Adv. Sci. 2 1500119
|
[19] |
Chen Z, Zhu L, Raman A and Fan S 2016 Nat. Commun. 7 13729
|
[20] |
Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R and Yin X 2017 Science 355 1062
|
[21] |
Smith G and Gentle A 2017 Nat. Energy 2 17142
|
[22] |
Goldstein E A, Raman A P and Fan S 2017 Nat. Energy 2 17143
|
[23] |
Hossain M M and Gu M 2016 Adv. Sci. 3 1500360
|
[24] |
Posarac M, Dimitrijevic M, Volkov-Husovic T, Devecerski A and Matovic B 2008 J. Eur. Ceram. Soc. 28 1275
|
[25] |
Dimitrijevic M, Posarac M, Majstorovic J, Volkov-Husovic T and Matovic B 2009 Ceram. Int. 35 1077
|
[26] |
Zou D, Chu X and Wu F 2013 Ceram. Int. 39 3585
|
[27] |
Wang X, Jiao B, Zhang X, Luo J and Guan H 2013 Adv. Mater. Res. 652-654 316
|
[28] |
Seo D, Ogawa K, Sakaguchi K, Miyamoto N and Tsuzuki Y 2012 Surf. Coat. Tech. 206 2316
|
[29] |
Bidoia E D 2005 Chem. Phys. Lett. 408 1
|
[30] |
Woskov P P, Einstein H H and Oglesby K D 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), p. 1
|
[31] |
Liu X, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
|
[32] |
Schuller J A, Taubner T and Brongersma M L 2009 Nat. Photon. 3 658
|
[33] |
Wang S and Liang K 2008 J. Non-Cryst. Solids 354 1522
|
[34] |
www.optotherm.com/emiss-table.htm
|
[35] |
Hogan M C 1969 Phys. Rev. 188 870
|
[36] |
Zhao D, Martini C E, Jiang S, Ma Y, Zhai Y, Tan G, Yin X and Yang R 2017 Appl. Energ. 205 1260
|
[37] |
Kou J, Jurado Z, Chen Z, Fan S and Minnich A J 2017 ACS Photonics 4 626
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|