Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 108503    DOI: 10.1088/1674-1056/acbe31
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Proton induced radiation effect of SiC MOSFET under different bias

Hong Zhang(张鸿)1, Hong-Xia Guo(郭红霞)1,3,†, Zhi-Feng Lei(雷志锋)2,‡, Chao Peng(彭超)2, Wu-Ying Ma(马武英)3, Di Wang(王迪)3, Chang-Hao Sun(孙常皓)1, Feng-Qi Zhang(张凤祁)3, Zhan-Gang Zhang(张战刚)2, Ye Yang(杨业)3, Wei Lv(吕伟)3, Zhong-Ming Wang(王忠明)3, Xiang-Li Zhong(钟向丽)1, and Xiao-Ping Ouyang(欧阳晓平)1,3
1 School of Material Science and Engineering, Xiangtan University, Xiangtan 411105, China;
2 Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China;
3 Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  Radiation effects of silicon carbide metal-oxide-semiconductor field-effect transistors (SiC MOSFETs) induced by 20 MeV proton under drain bias ($V_{\rm D}=800 $ V, $V_{\rm G}=0 $ V), gate bias ($V_{\rm D}=0 $ V, $V_{\rm G}=10$ V), turn-on bias ($V_{\rm D}=0.5 $ V, $V_{\rm G}=4 $ V) and static bias ($V_{\rm D}=0$ V, $V_{\rm G}=0 $ V) are investigated. The drain current of SiC MOSFET under turn-on bias increases linearly with the increase of proton fluence during the proton irradiation. When the cumulative proton fluence reaches $2 \times 10^{11}$ p$\cdot $cm$^{-2}$, the threshold voltage of SiC MOSFETs with four bias conditions shifts to the left, and the degradation of electrical characteristics of SiC MOSFETs with gate bias is the most serious. In the deep level transient spectrum test, it is found that the defect energy level of SiC MOSFET is mainly the ON2 ($E_{\rm c}-1.1$ eV) defect center, and the defect concentration and defect capture cross section of SiC MOSFET with proton radiation under gate bias increase most. By comparing the degradation of SiC MOSFET under proton cumulative irradiation, equivalent 1 MeV neutron irradiation and gamma irradiation, and combining with the defect change of SiC MOSFET under gamma irradiation and the non-ionizing energy loss induced by equivalent 1 MeV neutron in SiC MOSFET, the degradation of SiC MOSFET induced by proton is mainly caused by ionizing radiation damage. The results of TCAD analysis show that the ionizing radiation damage of SiC MOSFET is affected by the intensity and direction of the electric field in the oxide layer and epitaxial layer.
Keywords:  proton      silicon carbide metal-oxide-semiconductor field-effect transistor (SiC MOSFET)      degradation      defect      ionization radiation damage  
Received:  27 October 2022      Revised:  09 February 2023      Accepted manuscript online:  23 February 2023
PACS:  85.30.Tv (Field effect devices)  
  61.80.Jh (Ion radiation effects)  
  51.50.+v (Electrical properties)  
  84.30.Jc (Power electronics; power supply circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075065).
Corresponding Authors:  Hong-Xia Guo, Zhi-Feng Lei     E-mail:  guohxnint@126.com;leizf@ceprei.com

Cite this article: 

Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Zhi-Feng Lei(雷志锋), Chao Peng(彭超), Wu-Ying Ma(马武英), Di Wang(王迪), Chang-Hao Sun(孙常皓), Feng-Qi Zhang(张凤祁), Zhan-Gang Zhang(张战刚), Ye Yang(杨业), Wei Lv(吕伟), Zhong-Ming Wang(王忠明), Xiang-Li Zhong(钟向丽), and Xiao-Ping Ouyang(欧阳晓平) Proton induced radiation effect of SiC MOSFET under different bias 2023 Chin. Phys. B 32 108503

[1] Cooper J A 1997 Phys. Status Solidi (a) 162 305
[2] Elasser A and Chow T P 2002 Proc. IEEE 90 969
[3] Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O and Alia R G 2020 IEEE Trans. Nucl. Sci. 67 1381
[4] Witulski A F, Arslanbekov R, Raman A, Schrimpf R D, Sternberg A L, Galloway K F, Javanainen A, Grider D, Lichtenwalner D J and Hull B 2018 IEEE Trans. Nucl. Sci. 65 256
[5] Kuboyama S, Kamezawa C, Satoh Y, Hirao T and Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379
[6] Mizuta E, Kuboyama S, Abe H, Iwata Y and Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924
[7] Zhang H, Guo H X, Zhang F Q, Lei Z F, Pan X Y, Liu Y T, Gu Z Q, Ju A A, Zhong X L and Ouyang X P 2021 Microelectron. Reliab. 124 114329
[8] Shoji T, Nishida S, Hamada K and Tadano H 2015 Microelectron. Reliab. 55 1517
[9] Akturk A, Wilkins R, McGarrity J and Gersey B 2017 IEEE Trans. Nucl. Sci. 64 529
[10] Lauenstein J M, Casey M C, Topper A D, Wilcox E P, Phan A M and LaBel K A 2015 IEEE Nuclear & Space Radiation Effects Conference, July 13-17, 2015, Boston, USA, p. 12
[11] Kuboyama S, Kamezawa C, Satoh Y, Hirao T and Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379
[12] Harris R D 2007 IEEE Radiation Effects Data Workshop, July 23-27, 2007, Honolulu, USA, p. 63
[13] Zhang H, Guo H X, Lei Z F, Peng C, Zhang Z G, Chen Z W, Sun C H, He Y J, Zhang F Q, Pan X Y, Zhong X L and Ouyang X P 2022 Chin. Phys. B 32 028504
[14] Bai R X, Guo H X, Zhang H, Wang D, Zhang F Q, Pan X Y, Ma W Y, Hu J W, Liu Y W, Yang Y, Lv W and Wang Z M 2023 Acta Phys. Sin. 72 12401 (in Chinese)
[15] Ziegler J F, Ziegler M D and Biersack J P 2010 IEEE Trans. Nucl. Sci. 268 1818
[16] Zhang H, Guo H X, Gu Z Q, Liu Y T, Zhang F Q, Pan X Y, Ju A A, Liu Y and Feng Y H 2022 J. Terahertz Sci. Electron. Inform. Technol. 20 884
[17] Kawahara K, Suda J and Kimoto T 2013 J. Appl. Phys. 113 033705
[18] Kawahara K, Suda J and Kimoto T 2013 Appl. Phys. Express 6 051301
[19] Kimoto T and Cooper J A 2014 Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Chichester: John Wiley and Sons) pp. 154-160
[20] Bockstedte M, Mattausch A and Pankratov O 2004 Phys. Rev. B 69 235202
[21] Zywietz A, Furthmüller J and Bechstedt F 1999 Phys. Rev. B 59 15166
[22] Torpo L, Marlo M, Staab T E M and Nieminen R M 2001 J. Phys.: Condens. Matter 13 6203
[23] Agostinelliae S, Allisonas J, Amakoe K, et al. 2003 Nucl. Instrum. Method A 506 250
[24] Allison J, Amako K, Apostolakis J E A, et al. 2006 IEEE Trans. Nucl. Sci. 53 270
[25] Gu Z Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A and Liu Y T 2021 Acta Phys. Sin. 70 204 (in Chinese)
[1] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[2] Proton irradiation-induced dynamic characteristics on high performance GaN/AlGaN/GaN Schottky barrier diodes
Tao Zhang(张涛), Ruo-Han Li(李若晗), Kai Su(苏凯), Hua-Ke Su(苏华科), Yue-Guang Lv(吕跃广), Sheng-Rui Xu(许晟瑞), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(8): 087301.
[3] Assessing high-energy x-ray and proton irradiation effects on electrical properties of P-GaN and N-GaN thin films
Aoxue Zhong(钟傲雪), Lei Wang(王磊), Yun Tang(唐蕴), Yongtao Yang(杨永涛), Jinjin Wang(王进进), Huiping Zhu(朱慧平), Zhenping Wu(吴真平), Weihua Tang(唐为华), and Bo Li(李博). Chin. Phys. B, 2023, 32(7): 076102.
[4] First-principles study of non-radiative carrier capture by defects at amorphous-SiO2/Si(100) interface
Haoran Zhu(祝浩然), Weifeng Xie(谢伟锋), Xin Liu(刘欣), Yang Liu(刘杨), Jinli Zhang(张金利), and Xu Zuo(左旭). Chin. Phys. B, 2023, 32(7): 077303.
[5] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[6] Theoretical investigation on the fluorescent sensing mechanism for recognizing formaldehyde: TDDFT calculation and excited-state nonadiabatic dynamics
Yunfan Yang(杨云帆), Lujia Yang(杨璐佳), Fengcai Ma(马凤才), Yongqing Li(李永庆), and Yue Qiu(邱岳). Chin. Phys. B, 2023, 32(5): 057801.
[7] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
[8] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[9] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[10] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[11] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[12] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[13] Design and calibration of an elliptical crystal spectrometer for the diagnosis of proton-induced x-ray emission (PIXE)
Yanlyu Fang(方言律), Dongyu Li(李东彧), Hao Cheng(程浩), Yuan Gao(高原), Ze-Qing Shen(申泽清),Tong Yang(杨童), Yu-Ze Li(李昱泽), Ya-Dong Xia(夏亚东), Yang Yan(晏炀), Sha Yan(颜莎),Chen Lin(林晨), and Xue-Qing Yan(颜学庆). Chin. Phys. B, 2023, 32(11): 110703.
[14] Improving efficiency of n-i-p perovskite solar cells enabled by 3-carboxyphenylboronic acid additive
Bin-Jie Li(李斌杰), Jia-Wen Li(李嘉文), Gen-Jie Yang(杨根杰), Meng-Ge Wu(吴梦鸽), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2023, 32(10): 107801.
[15] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
No Suggested Reading articles found!