Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104205    DOI: 10.1088/1674-1056/accff2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single-mode GaSb-based laterally coupled distributed-feedback laser for CO2 gas detection

Shi-Xian Han(韩实现)1,2, Jin-Yi Yan(严进一)1, Chun-Fang Cao(曹春芳)1, Jin Yang(杨锦)1, An-Tian Du(杜安天)1,3, Yuan-Yu Chen(陈元宇)1, Ruo-Tao Liu(刘若涛)1,2, Hai-Long Wang(王海龙)3, and Qian Gong(龚谦)1,†
1 Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
Abstract  We report on a GaSb-based laterally coupled distributed feedback (LC-DFB) laser with Cr gratings operating at 2004 nm for CO2 detection application. Butterfly packaged with single-mode fiber pigtailed, the laser diode operates in the continuous-wave mode in a temperature range from -10 ℃ to 60 ℃, with a maximum output power of 2 mW and a maximum side-mode suppression ratio over 30 dB. Wavelength-modulated absorption spectroscopy of CO2 demonstrates the applicability of the LC-DFB laser to tunable diode laser absorption spectroscopy. Furthermore, the diode junction temperature, which is measured by using the wavelength shift method, exhibits a maximum value of 17 ℃ in the single-mode operation range.
Keywords:  semiconductor lasers      quantum wells      laser spectroscopy  
Received:  23 March 2023      Revised:  24 April 2023      Accepted manuscript online:  25 April 2023
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  78.67.De (Quantum wells)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2017SHZDZX03).
Corresponding Authors:  Qian Gong     E-mail:  qgong@mail.sim.ac.cn

Cite this article: 

Shi-Xian Han(韩实现), Jin-Yi Yan(严进一), Chun-Fang Cao(曹春芳), Jin Yang(杨锦), An-Tian Du(杜安天), Yuan-Yu Chen(陈元宇), Ruo-Tao Liu(刘若涛), Hai-Long Wang(王海龙), and Qian Gong(龚谦) Single-mode GaSb-based laterally coupled distributed-feedback laser for CO2 gas detection 2023 Chin. Phys. B 32 104205

[1] Hodgkinson J and Tatam R P 2013 Meas. Sci. Technol. 24 012004
[2] Lackner M 2007 Reviews in Chemical Engineering 23 65
[3] Sauer C G, Pisano J T and Fitz D R 2003 California Atmospheric Environment 37 1583
[4] Jia J, Li W, Chai ao, Zhang S, Zhang M, Cui H, Liu J and Liu Z 2019 Infrared and Laser Engineering 48 517007
[5] Yang C, Xie S, Zhang Y, Shang J, Huang S S, Yuan Y, Shao F, Zhang Y, Xu Y and Niu Z 2019 Appl. Phys. Lett. 114 021102
[6] Miller L M, Verdeyen J T, Coleman J J, Bryan R P, Alwan J J, Beernink K J, Hughes J S and Cockerill T M 1991 IEEE Photon. Technol. Lett. 3 6
[7] Xu L, Forrest S R, Menna R, Martinelli R and Connolly J C 1996 Electron. Lett. 32 1717
[8] Xi Y, Xi J Q, Gessmann Th, Shah J M, Kim J K, Schubert E F, Fischer A J, Crawford M H, Bogart K H A and Allerman A 2005 Appl. Phys. Lett. 86 031907
[9] Yang C A, Xie S W, Huang S S, Yuan Y, Zhang Y, Shang J M, Zhang Y, Xu Y Q and Niu Z C 2019 IEEE Photon. Technol. Lett. 31 210
[10] Wall K 2006 A Review of Tunable Diode Laser Absorption Spectroscopy (Toronto)
[11] Schiff H I, Mackay G I and Bechara J 1994 Res. Chem. Intermed. 20 525
[12] Li J Y, Du Z H, Ma Y W and Xu K X 2013 Chin. Phys. B 22 034203
[13] Asmari A, Hodgkinson J, Chehura E, Staines S E and Tatam R P 2014 SPIE Photonics Europe (Brussels, Belgium) p. 91351A
[14] Asmari A, Hodgkinson J, Chehura E, Staines S E and Tatam R P 2017 Opt. Express 25 11679
[15] Kim D S, Holloway C, Han B and Bar-Cohen A 2016 Appl. Opt. 55 7487
[16] Cheng W H, Wang S C, Yang Y D, Chi S, Sheen M T and Kuang J H 1997 IEEE Trans. Comp., Packag., Manufact. Technol. B 20 396
[17] Zhu C, Zhang Y G, Li A Z and Zheng Y L 2005 Semicond. Sci. Technol. 20 563
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface
Gang Wang(王刚), Shan Guan(管闪), Zhi-Gang Song(宋志刚), and Jun-Wei Luo(骆军委). Chin. Phys. B, 2023, 32(10): 107309.
[3] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[4] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[7] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[8] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[9] Anisotropic stimulated emission cross-section measurement in Nd: YVO4
Rui Guo(郭瑞), Yijie Shen(申艺杰), Yuan Meng(孟鸢), Mali Gong(巩马理). Chin. Phys. B, 2019, 28(4): 044204.
[10] Active hyperspectral imaging with a supercontinuum laser source in the dark
Zhongyuan Guo(郭中源), Yu Liu(刘煜), Xin Zheng(郑鑫), Ke Yin(殷科). Chin. Phys. B, 2019, 28(3): 034206.
[11] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[12] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[13] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[14] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[15] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
No Suggested Reading articles found!