|
|
General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents |
Sheng-Lian Jiang(蒋盛莲)1, Yanxia Liu(刘彦霞)2,†, and Li-Jun Lang(郎利君)1,3,‡ |
1 School of Physics, South China Normal University, Guangzhou 510006, China; 2 School of Physics and Astronomy, Yunnan University, Kunming 650091, China; 3 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China |
|
|
Abstract We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts. This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved. To demonstrate the validity of this mapping, we apply it to two non-Hermitian localization models: an Aubry-André-like model with nonreciprocal hopping and complex quasiperiodic potentials, and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping. We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models. This general mapping may catalyze further studies on mobility edges, Lyapunov exponents, and other significant quantities pertaining to localization in non-Hermitian mosaic models.
|
Received: 17 April 2023
Revised: 25 June 2023
Accepted manuscript online: 05 July 2023
|
PACS:
|
72.15.Rn
|
(Localization effects (Anderson or weak localization))
|
|
72.20.Ee
|
(Mobility edges; hopping transport)
|
|
73.20.Fz
|
(Weak or Anderson localization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204406), the National Key Research and Development Program of China (Grant No. 2022YFA1405304), and the Guangdong Provincial Key Laboratory (Grant No. 2020B1212060066). |
Corresponding Authors:
Yanxia Liu, Li-Jun Lang
E-mail: yxliu-china@ynu.edu.cn;ljlang@scnu.edu.cn
|
Cite this article:
Sheng-Lian Jiang(蒋盛莲), Yanxia Liu(刘彦霞), and Li-Jun Lang(郎利君) General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents 2023 Chin. Phys. B 32 097204
|
[1] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) [2] Xu Y, Wang S T and Duan L M 2017 Phys. Rev. Lett. 118 045701 [3] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079 [4] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808 [5] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 [6] Lee C H and Thomale R 2019 Phys. Rev. B 99 201103 [7] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015 [8] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W and Xue P 2019 Nat. Phys. 16 761 [9] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kieβling T, Molenkamp L W, Lee C H, Szameit A, Greiter M and Thomale R 2020 Nat. Phys. 16 747 [10] Borgnia D, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802 [11] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801 [12] Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R and Szameit A 2020 Science 368 eaaz8727 [13] Longhi S 2020 Phys. Rev. Lett. 124 066602 [14] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005 [15] Wang K, Dutt A, Yang K Y, Wojcik C C, Vučković J and Fan S 2021 Science 371 1240 [16] Wang K, Li T, Xiao L, Han Y, Yi W and Xue P 2021 Phys. Rev. Lett. 127 270602 [17] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570 [18] Hatano N and Nelson D R 1998 Phys. Rev. B 58 8384 [19] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673 [20] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287 [21] Evers F and Mirlin A D 2008 Rev. Mod. Phys. 80 1355 [22] Tzortzakakis A F, Makris K G and Economou E N 2020 Phys. Rev. B 101 014202 [23] Huang Y and Shklovskii B I 2020 Phys. Rev. B 101 014204 [24] Jazaeri A and Satija I I 2001 Phys. Rev. E 63 036222 [25] Yuce C 2014 Phys. Lett. A 378 2024 [26] Zeng Q B, Chen S and Lü R 2017 Phys. Rev. A 95 062118 [27] Jiang H, Lang L J, Yang C, Zhu S L and Chen S 2019 Phys. Rev. B 100 054301 [28] Longhi S 2019 Phys. Rev. B 100 125157 [29] Longhi S 2019 Phys. Rev. Lett. 122 237601 [30] Zeng Q B, Yang Y B and Xu Y 2020 Phys. Rev. B 101 020201 [31] Liu Y, Jiang X P, Cao J and Chen S 2020 Phys. Rev. B 101 174205 [32] Zeng Q B and Xu Y 2020 Phys. Rev. Res. 2 033052 [33] Liu T, Guo H, Pu Y and Longhi S 2020 Phys. Rev. B 102 024205 [34] Liu Y, Wang Y, Zheng Z and Chen S 2021 Phys. Rev. B 103 134208 [35] Liu Y, Zhou Q and Chen S 2021 Phys. Rev. B 104 024201 [36] Wang Y, Xia X, Wang Y, Zheng Z and Liu X J 2021 Phys. Rev. B 103 174205 [37] Cai X 2021 Phys. Rev. B 103 014201 [38] Gong L Y, Lu H and Cheng W W 2021 Advanced Theory and Simulations 4 2100135 [39] Liu Y, Wang Y, Liu X J, Zhou Q and Chen S 2021 Phys. Rev. B 103 014203 [40] Dwiputra D and Zen F P 2022 Phys. Rev. B 105 L081110 [41] Aubry S and André G 1980 Proceedings, VIII International Colloquium on Group-Theoretical Methods in Physics 3 [42] Biddle J and Sarma S D 2010 Phys. Rev. Lett. 104 070601 [43] Deng X, Ray S, Sinha S, Shlyapnikov G V and Santos L 2019 Phys. Rev. Lett. 123 025301 [44] Yao H, Khoudli H, Bresque L and Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405 [45] Wang Y, Xia X, Zhang L, Yao H, Chen S, You J, Zhou Q and Liu X J 2020 Phys. Rev. Lett. 125 196604 [46] Roy S, Mishra T, Tanatar B and Basu S 2021 Phys. Rev. Lett. 126 106803 [47] Liu T, Xia X, Longhi S and Sanchez-Palencia L 2022 SciPost Phys. 12 027 [48] Avila A 2015 Acta Mathematica 215 1 [49] Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Das Sarma S and Bloch I 2018 Phys. Rev. Lett. 120 160404 [50] An F A, Padavić K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S and Gadway B 2021 Phys. Rev. Lett. 126 040603 [51] Wang Y, Zhang J H, Li Y, Wu J, Liu W, Mei F, Hu Y, Xiao L, Ma J, Chin C and Jia S 2022 Phys. Rev. Lett. 129 103401 [52] Lin Q, Li T, Xiao L, Wang K, Yi W and Xue P 2022 Phys. Rev. Lett. 129 113601 [53] Luo X, Ohtsuki T and Shindou R 2021 Phys. Rev. Lett. 126 090402 [54] Goblot V, Štrkalj A, Pernet N, Lado J L, Dorow C, Lemaître A, Le Gratiet L, Harouri A, Sagnes I, Ravets S, Amo A, Bloch J and Zilberberg O 2020 Nat. Phys. 16 832 [55] Rousha P, Neill C, Tangpanitanon J, Bastidas V M, Megrant A, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A, Foxen B, Giustina M, Jeffrey E, Kelly J, Lucero E, Mutus J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Neven H, Angelakis D G and Martinis J 2017 Science 358 1175 [56] Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N and Silberberg Y 2009 Phys. Rev. Lett. 103 013901 [57] Ganeshan S, Pixley J H and Das Sarma S 2015 Phys. Rev. Lett. 114 146601 [58] Liu Y 2022 A general approach to the exact localized transition points of 1d mosaic disorder models (Preprint 2208.02762) [59] Wang Y, Zhang L, Wan Y, He Y and Wang Y 2022 Phys. Rev. B 107 L140201 [60] We use the notion "Lyapunov exponent" because in Hermitian disorder or quasiperiodic systems Lyapunov exponent is just the inverse of the localization length,ucite[64] but how to calculate Lyapunov exponent for nonreciprocal systems using transfer matrix is still an open question. [61] Jitomirskaya S Y 1999 Annals of Mathematics 150 1159 [62] Avila A, You J and Zhou Q 2017 Duke Mathematical Journal 166 2697 [63] Johnson R A 1986 Journal of Differential Equations 61 54 [64] Carmona R 1982 Duke Math. J. 49 191 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|