Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097301    DOI: 10.1088/1674-1056/acaa2c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study

Weijie Wei(魏伟杰), Weifeng Lü(吕伟锋), Ying Han(韩颖), Caiyun Zhang(张彩云), and Dengke Chen(谌登科)
School of Microelectronics, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  The steep sub-threshold swing of a tunneling field-effect transistor (TFET) makes it one of the best candidates for low-power nanometer devices. However, the low driving capability of TFETs prevents their application in integrated circuits. In this study, an innovative gate-all-around (GAA) TFET, which represents a negative capacitance GAA gate-to-source overlap TFET (NCGAA-SOL-TFET), is proposed to increase the driving current. The proposed NCGAA-SOL-TFET is developed based on technology computer-aided design (TCAD) simulations. The proposed structure can solve the problem of the insufficient driving capability of conventional TFETs and is suitable for sub-3-nm nodes. In addition, due to the negative capacitance effect, the surface potential of the channel can be amplified, thus enhancing the driving current. The gate-to-source overlap (SOL) technique is used for the first time in an NCGAA-TFET to increase the band-to-band tunneling rate and tunneling area at the silicon-germanium heterojunction. By optimizing the design of the proposed structure via adjusting the SOL length and the ferroelectric layer thickness, a sufficiently large on-state current of 17.20 upmu A can be achieved and the threshold voltage can be reduced to 0.31 V with a sub-threshold swing of 44.98 mV/decade. Finally, the proposed NCGAA-SOL-TFET can overcome the Boltzmann limit-related problem, achieving a driving current that is comparable to that of the traditional complementary metal-oxide semiconductor devices.
Keywords:  negative capacitance (NC)      gate-all-around (GAA)      silicon-germanium heterojunction      gate-to-source overlap (SOL)  
Received:  21 September 2022      Revised:  16 November 2022      Accepted manuscript online:  09 December 2022
PACS:  73.40.Jn (Metal-to-metal contacts)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  77.55.-g (Dielectric thin films)  
  85.35.-p (Nanoelectronic devices)  
Fund: The research presented in this work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY22F040001), the National Natural Science Foundation of China (Grant No. 62071160), and the Graduate Scientific Research Foundation of Hangzhou Dianzi University.
Corresponding Authors:  Weifeng Lü     E-mail:  lvwf@hdu.edu.cnn

Cite this article: 

Weijie Wei(魏伟杰), Weifeng Lü(吕伟锋), Ying Han(韩颖), Caiyun Zhang(张彩云), and Dengke Chen(谌登科) Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study 2023 Chin. Phys. B 32 097301

[1] Wang J, Chung H S and Li R T 2013 IEEE Trans. Power Electron. 28 573
[2] Markov I L 2014 Nature 512 147
[3] Zhirnov V V and Cavin R K 2008 Nat. Nanotechnol. 3 77
[4] Hu V P H, Chiu P C, Sachid A B and Hu C M 2017 IEEE International Electron Devices Meeting (IEDM), 02-06 December 2017, San Francisco, CA, USA, p. 23.1.1
[5] Salahuddin S and Datta S 2008 Nano Lett. 8 405
[6] Sarkar D, Xie X J, Liu W, Cao W, Kang J H, Gong Y G, Kraemer S, Ajayan P M and Banerjee K 2015 Nature. 526 91
[7] Ionescu A M and Riel H 2011 Nature. 479 329
[8] Avci U E, Morris D H and Young I A 2015 IEEE J Electron Devi. 3 88
[9] Lu B, Wang D W, Chen Y L, Cui Y, Miao Y H and Dong L P 2021 Acta. Phys. Sin. 70 218 (in Chinese)
[10] Loubet N, Hook T, Montanini P, et al. 2017 Symposium on VLSI Technology IEEE, June 5-8, 2017, Kyoto, Japan, p. T230
[11] Ritzenthaler R, Mertens H, Pena V, et al. 2018 IEEE International Electron Devices Meeting (IEDM), December 1-5, 2018, San Francisco, CA, USA, p. 21.5.1
[12] Kao M Y, Salahuddin S and Hu C M 2021 Solid State Electron. 181 108010
[13] Jiang C S, Liang R R and Xu J 2016 IEEE Trans Nanotechnol. 16 58
[14] Saeidi A, Rosca T, Memisevic E, Stolichnov L, Cavalieri M, Wernersson L E and Ionescu A M 2020 Nano Lett. 20 3255
[15] Sakib F I, Hasan M A and Hossain M 2021 IEEE Trans. Electron Dev. 69 311
[16] Mazumder A A M, Hosen K, Islam M S and Park J 2022 IEEE Access. 10 30323
[17] Singh A, Sinha S K and Chander S 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), December 2-4, 2021, Coimbatore, India, p. 297
[18] Hu V P H, Lin H H, Lin Y K and Hu C M 2020 IEEE Trans Electron Devices. 67 2593
[19] Zhao Y, Liang Z X, Huang Q Q, Chen C, Yang M X, Sun Z X, Zhu K K, Wang H M, Liu S H, Liu T Y, Peng Y, Han G Q and Huang R 2019 IEEE EDL 40 989
[20] Chawla T, Khosla M and Raj B 2022 Mat Sci. Semicon. Proc. 145 106643
[21] Abdi D B and Kumar M J 2014 IEEE J. Electron Devi. 2 187
[22] Singh A and Pandey C K 2022 Silicon 14 1463
[23] Acharya A, Solanki A B, Glass S, Zhao Q T and Anand B 2019 IEEE Trans. Electron Dev. 66 4081
[24] International Roadmap for Device and Systems 2021 Update More Moore. [Online]
[25] Yu T Y, Lü W F, Zhao Z F, Si P and Zhang K 2021 Microelectronics J. 108 104981
[26] Lin C I, Khan A I, Salahuddin S and Hu C M 2016 IEEE Trans. Electron Dev. 63 2197
[27] Yu T Y, Lü W F, Zhao Z F, Si P and Zhang K 2020 Microelectronics J. 98 104730
[28] Rusu A, Saeidi A and Ionescu A M 2016 Nanotechnology 27 115201
[29] Saeidi A, Jazaeri F, Stolichnov I, Luong G V, Zhao Q T, Mantl S and Ionescu A M 2018 Nanotechnology 29 095202
[30] Keighobadi D, Mohammadi S and Fathipour M 2019 IEEE Trans. Electron Dev. 66 3646
[31] Knoch J, Mantl S and Appenzeller J 2007 Solid State Electron. 51 572
[32] Chen Z X, Yu H Y, Singh N, Shen N S, Sayanthan R D, Lo G Q and Kwong D L 2009 IEEE EDL 30 754
[33] Jimenez D, Miranda E and Godoy A 2010 IEEE Trans Electron Devices. 57 2405
[1] Design and investigation of doping-less gate-all-around TFET with Mg2Si source material for low power and enhanced performance applications
Pranav Agarwal, Sankalp Rai, Rakshit Y. A, and Varun Mishra. Chin. Phys. B, 2023, 32(10): 107310.
[2] Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors
Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武). Chin. Phys. B, 2021, 30(12): 127701.
[3] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[4] Double-gate-all-around tunnel field-effect transistor
Wen-Hao Zhang(张文豪), Zun-Chao Li(李尊朝), Yun-He Guan(关云鹤), Ye-Fei Zhang(张也非). Chin. Phys. B, 2017, 26(7): 078502.
[5] Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells
Lie-Feng Feng(冯列峰), Kun Zhao(赵昆), Hai-Tao Dai(戴海涛), Shu-Guo Wang(王树国), Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2016, 25(3): 037307.
No Suggested Reading articles found!