Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090703    DOI: 10.1088/1674-1056/ace247
Special Issue: SPECIAL TOPIC — Smart design of materials and design of smart materials
SPECIAL TOPIC—Smart design of materials and design of smart materials Prev   Next  

Crysformer: An attention-based graph neural network for properties prediction of crystals

Tian Wang(王田)1,2,†, Jiahui Chen(陈家辉)3, Jing Teng(滕婧)4, Jingang Shi(史金钢)5, Xinhua Zeng(曾新华)6, and Hichem Snoussi7
1 Institute of Artificial Intelligence, SKLSDE, Beihang University, Beijing 100191, China;
2 Zhongguancun Laboratory, Beijing 100191, China;
3 School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
4 School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China;
5 School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
6 Academy for Engineering and Technology, Fudan University, Shanghai 200433, China;
7 Charles Delaunay Institute, University of Technology of Troyes, Troyes Cedex 10004, France
Abstract  We present a novel approach for the prediction of crystal material properties that is distinct from the computationally complex and expensive density functional theory (DFT)-based calculations. Instead, we utilize an attention-based graph neural network that yields high-accuracy predictions. Our approach employs two attention mechanisms that allow for message passing on the crystal graphs, which in turn enable the model to selectively attend to pertinent atoms and their local environments, thereby improving performance. We conduct comprehensive experiments to validate our approach, which demonstrates that our method surpasses existing methods in terms of predictive accuracy. Our results suggest that deep learning, particularly attention-based networks, holds significant promise for predicting crystal material properties, with implications for material discovery and the refined intelligent systems.
Keywords:  deep learning      property prediction      crystal      attention networks  
Received:  01 May 2023      Revised:  08 June 2023      Accepted manuscript online:  28 June 2023
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61972016 and 62032016) and the Beijing Nova Program (Grant No. 20220484106).
Corresponding Authors:  Tian Wang     E-mail:  wangtian@buaa.edu.cn

Cite this article: 

Tian Wang(王田), Jiahui Chen(陈家辉), Jing Teng(滕婧), Jingang Shi(史金钢),Xinhua Zeng(曾新华), and Hichem Snoussi Crysformer: An attention-based graph neural network for properties prediction of crystals 2023 Chin. Phys. B 32 090703

[1] Ouyang Z W and Rao G H 2013 Chin. Phys. B 22 097501
[2] Beran G J O, Hartman J D and Heit Y N 2016 Acc. Chem. Res. 49 2501
[3] Parvin F and Naqib S H 2017 Chin. Phys. B 26 106201
[4] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[5] Choudhary K, DeCost B and Tavazza F 2018 Phys. Rev. Mater. 2 083801
[6] Lisa C and Curteanu S 2007 Comput. Aided Chem. Eng. 24 39
[7] Zhao H M, Wang R, Zhao C and Zheng W 2023 Chin. Phys. B 32 056402
[8] Tahkur T S, Dubey R and Desiraju G R 2015 Annu. Rev. Phys. Chem. 66 21
[9] Woodley A M and Catlow R 2008 Nat. Mater. 7 937
[10] Cheng G J, Gong X G and Yin W J 2022 Nat. Commun. 13 1492
[11] Meng H Y, Xu Z X, Yang J, Liang B and Cheng J C 2022 Chin. Phys. B 31 064305
[12] Li H, Wang Z, Zou N L, Ye M, Xu R Z, Gong X X, Duan W H and Xu Y 2022 Nat. Comput. Sci. 2 367
[13] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[14] Voulodimos A, Doulamis N, Doulamis A and Protopapadakis E 2018 Comput. Intell. Neurosci. 2018 7068349
[15] He K M, Zhang X Y, Ren S Q and Sun J 2016 Proceedings of the IEEE Conference on Computer Vision and pattern Pecognition, June 26, 2016, Las Vegas, United States, pp. 770-778
[16] He K M, Gkioxari G, Dollar P and Girshick R 2017 Proceedings of the IEEE International Conference on Computer Vision, Oct. 22-29, 2017, Venice, Italy, p. 2961
[17] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L and Polosukhin I 2017 Proceedings of Neural Information Processing Systems, Dec. 4-9, 2017, Long Beach, United States, p. 5998
[18] Devlin J, Chang M W, Lee K and Toutanova K 2018 arXiv: 1810.04805
[19] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J and Houlsby N 2020 arXiv: 2010.11929
[20] Liu Z, Lin Y T, Cao Y, Hu H, Wei Y X, Zhang Z, Lin S and Guo B N 2021 Proceedings of the IEEE International Conference on Computer Vision, Oct. 11-17, 2021, p. 10012
[21] Wu Z H, Pan S R, Chen F W, Long G D, Zhang C Q and Yu P S 2020 IEEE Trans. Neural Netw. Learn. Syst. 32 4
[22] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301
[23] Chen C, Ye W K, Zuo Y X, Zheng C and Ong S P 2019 Chem. Mater. 31 3564
[24] Choudhary K and DeCost B 2021 NPJ Comput. Mater. 7 185
[25] Kipf T N and Welling M 2016 arXiv: 1609.02907
[26] Veličković P, Cucurull G, Casanova A, Romero A, Lió P and Bengio Y 2018 Proceedings of International Conference on Learning Representations, Apr. 30-May 3, 2018, Vancouver, Canada, p. 1
[27] Yun S, Jeong M, Kim R, Kang J and Kim H J 2019 Proceedings of Neural Information Processing Systems, Dec. 8-14, 2019, Vancouver, Canada, p. 11983
[28] Wang T, Chen J H, Lv J H, Liu K X, Zhu A C, Hichem S and Zhang B C 2022 IEEE Trans. Neural Netw. Learn. Syst. 2022 3169488
[29] Loshchilov I and Hutter F 2019 Proceedings of International Conference on Learning Representations, May 6-9, 2019, New Orleans, United States, p. 1
[30] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
[31] Choudhary K, Garrity K F, Reid A C E, DeCost B, Biacchi A J, Hight Walker A R, Trautt Z, Hattrick-Simpers J, Kusne A G, Centrone A, Davydov A, Jiang J, Pachter R, Cheon G, Reed E, Agrawal A, Qian X, Sharma V, Zhuang H, Kalinin S V, Sumpter B G, Pilania G, Acar P, Mandal S, Haule K, Vanderbilt D, Rabe K and Tavazza F 2020 NPJ Comput. Mater. 6 173
[1] Classification and structural characteristics of amorphous materials based on interpretable deep learning
Jiamei Cui(崔佳梅), Yunjie Li(李韵洁), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(9): 096101.
[2] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[3] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[4] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[5] Effects of Cu and Co additions on the crystallization and magnetic properties of FeNbB alloy
Wan-Qiu Yu(于万秋), Bo Tian(田博), Ping-Li Zhang(张平丽), Jia-Hui Wang(王佳慧), and Zhong Hua(华中). Chin. Phys. B, 2023, 32(8): 088102.
[6] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[7] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[8] High power, widely tunable femtosecond MgO:PPLN optical parametric oscillator
Jinfang Yang(杨金芳), Chong Wang(王翀), Weijun Ling(令维军), Jingwen Xue(薛婧雯), Xiaojuan Du(杜晓娟), Wenting Wang(王文婷), Yuxiang Zhao(赵玉祥), Feiping Lu(路飞平), Xiangbing Li(李向兵), Jiajun Song(宋贾俊), Zhaohua Wang(王兆华), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(7): 074204.
[9] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[10] High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal
Xiaorong Wang(王晓蓉), Hongming Fei(费宏明), Han Lin(林瀚), Min Wu(武敏), Lijuan Kang(康丽娟), Mingda Zhang(张明达), Xin Liu(刘欣), Yibiao Yang(杨毅彪), and Liantuan Xiao(肖连团). Chin. Phys. B, 2023, 32(7): 074205.
[11] Two-photon absorption of FAPbBr3 perovskite nanocrystals
Xuanyu Zhang(张轩宇), Shuyu Xiao(肖书宇), Xiongbin Wang(王雄彬), Tingchao He(贺廷超), and Rui Chen(陈锐). Chin. Phys. B, 2023, 32(6): 064212.
[12] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[13] Extremely fast vortex dynamics in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrip
A B Yu(于奥博), C T Lin(林成天), X F Zhang(张孝富), and L X You(尤立星). Chin. Phys. B, 2023, 32(6): 067402.
[14] Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions
Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航). Chin. Phys. B, 2023, 32(6): 066102.
[15] Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism
Hai-Jian Bai(柏海舰), Chen-Chen Guo(过晨晨), Heng Ding(丁恒), Li-Yang Wei(卫立阳), Ting Sun(孙婷), and Xing-Yu Chen(陈星宇). Chin. Phys. B, 2023, 32(6): 060507.
No Suggested Reading articles found!