|
|
Vibrational resonance in globally coupled bistable systems under the noise background |
Jiangling Liu(刘江令)1, Chaorun Li(李朝润)1, Hailing Gao(高海玲)2, and Luchun Du(杜鲁春)1,† |
1 Department of Physics, Yunnan University, Kunming 650500, China; 2 Graduate School, Yunnan Normal University, Kunming 650500, China |
|
|
Abstract Effects of system size, coupling strength, and noise on vibrational resonance (VR) of globally coupled bistable systems are investigated. The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values. The increase in system size induces and enhances the VR, while the increase in noise intensity suppresses and eventually eliminates the VR. Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions. This research has potential applications to the weak signal detection process in stochastic multi-body systems.
|
Received: 14 December 2022
Revised: 28 February 2023
Accepted manuscript online: 02 March 2023
|
PACS:
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
Fund: Project supported by the Xing Dian Talents Support Project of Yunnan Province (Grant No. YNWR-QNBJ-2018-0040), the Youth Project of Applied Basic Research of Yunnan Science (Grant No. 202201AU070062), and the Yunnan University's Research Innovation Fund for Graduate Students (Grant No. KC-22221171). |
Corresponding Authors:
Luchun Du
E-mail: lcdu@ynu.edu.cn
|
Cite this article:
Jiangling Liu(刘江令), Chaorun Li(李朝润), Hailing Gao(高海玲), and Luchun Du(杜鲁春) Vibrational resonance in globally coupled bistable systems under the noise background 2023 Chin. Phys. B 32 070502
|
[1] Landa P S and McClintock P V E 2000 J. Phys. A: Math. Gen. 33 L433 [2] Baltanás J P, López L, Blechman I I, Landa P S, Zaikin A, Kurths J and Sanjuán M A F 2003 Phys. Rev. E 67 066119 [3] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453 [4] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223 [5] Lin S C, Tian T, Yin P R, Huang P, Zhang L and Du J F 2021 Chin. Phys. Lett. 38 020502 [6] He Z W, Yao C G, Shuai J W and Nakano T 2020 Chin. Phys. B 29 128702 [7] Jung P and Hänggi P 1991 Phys. Rev. A 44 8032 [8] Li Q Q, Xu X M, Yin L Z, Ding Y P, Ding J F and Sun K H 2018 Chin. Phys. B 27 034203 [9] He L F, Liu Q L and Zhang T Q 2022 Chin. Phys. B 31 070503 [10] Jeyakumari S, Chinnathambi V, Rajasekar S and Sanjuán M A F 2009 Phys. Rev. E 80 046608 [11] Fang C J and Liu X B 2012 Chin. Phys. Lett. 29 050504 [12] Yang J H 2012 Chin. Phys. Lett. 29 104501 [13] Gandhimathi V M, Rajasekar S and Kurths J 2006 Phys. Lett. A 360 279 [14] Rajasekar S, Abirami K and Sanjuán M A F 2011 Chaos 21 033106 [15] Jeyakumari S, Chinnathambi V, Rajasekar S and Sanjuán M A F 2011 Int. J. Bifurcat. Chaos 21 275 [16] Vincent U E, Roy-Layinde T O, Popoola O O, Adesina P O and McClintock P V E 2018 Phys. Rev. E 98 062203 [17] Abirami K, Rajasekar S and Sanjuán M A F 2013 Pramana 81 127 [18] Zaikin A A, López L, Baltanás J P, Kurths J and Sanjuán M A F 2002 Phys. Rev. E 66 011106 [19] Roy S, Das D and Banerjee D 2021 Int. J. Non-Linear Mech. 135 103771 [20] Kolebaje O, Popoola O O and Vincent U E 2021 Physica D 419 132853 [21] Wang G W, Yu D, Ding Q M, Li T Y and Jia Y 2021 Chaos Solitons Fractals 150 111210 [22] Du L C, Han R S, Jiang J H and Guo W 2020 Phys. Rev. E 102 012149 [23] Jiang J H, Li K Y, Guo W and Du L C 2021 Chaos Solitons Fractals 152 111400 [24] Olusola O I, Shomotun O P, Vincent U E and McClintock P V E 2020 Phys. Rev. E 101 052216 [25] Sarkar P, Paul S and Ray D S 2021 Phys. Rev. E 104 014202 [26] Liu J L, Jiang J H, Ge M M, Li Y Y and Du L C 2022 J. Eng. 2022 857 [27] Zhai Z M, Kong L W and Lai Y C 2022 arXiv:2211.09955 [cs.LG] [28] Li W J, Ren Y H and Duan F B 2022 Chin. Phys. B 31 080503 [29] Jafari S, Bao B, Volos C, Nazarimehr F ang Bao H 2022 Eur. Phys. J. Spec. Top. 231 3957 [30] Liang X M, Hua L, Zhang X Y and Zhao L 2022 Phys. Rev. E 106 064306 [31] Olivera-Atencio M L, Morillo M and Casado-Pascual J 2021 Phys. Rev. E 104 064204 [32] Zhang Y, Hu G and Gammaitoni L 1998 Phys. Rev. E 58 2952 [33] Wu D, Zhu S Q, Luo X Q and Wu L 2011 Phys. Rev. E 84 021102 [34] Yao Y G 2021 Chin. Phys. B 30 060503 [35] Deng B, Wang J and Wei X L 2009 Chaos 19 013117 [36] Yao C G and Zhan M 2010 Phys. Rev. E 81 061129 [37] Liu C and Liang X M 2019 Phys. Rev. E 100 032206 [38] Pikovsky A, Zaikin A and de la Casa M A 2002 Phys. Rev. Lett. 88 050601 [39] Desai R C and Zwanzig R 1978 J. Stat. Phys. 19 1 [40] Kometani K and Shimizu H 1975 J. Stat. Phys. 13 473 [41] Burada P S, Schmid G, Reguera D, Vainstein M H, Rubi J M and Hänggi P 2008 Phys. Rev. Lett. 101 130602 [42] Chizhevsky V N and Giacomelli G 2004 Phys. Rev. E 70 062101 [43] Cubero D 2008 Phys. Rev. E 77 021112 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|