Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050502    DOI: 10.1088/1674-1056/ac9367
GENERAL Prev   Next  

Dynamical analysis for the sustained harvesting of microorganisms using flocculants in a random environment

Rong Liu(刘蓉)1,2 and Wanbiao Ma(马万彪)1,†
1 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  The use of flocculants to collect/extract microorganisms is of great practical significance for the development of the application of microorganisms. In this paper, a high-dimensional nonlinear stochastic differential equation model is constructed to describe the continuous culture of microorganisms with multiple nutrients and the flocculation process of microorganisms. The study of the dynamics of this model can provide feasible control strategies for the collection/extraction of microorganisms. The main theoretical results are sufficient conditions for the permanence and extinction of the stochastic differential equation model, which are also extensions of some results in the existing literatures. In addition, through numerical simulations, we vividly demonstrate the statistical characteristics of the stochastic differential equation model.
Keywords:  stochastic process      stochastically ultimately bounded      stochastic permanence      noise-induced transitions  
Received:  04 May 2022      Revised:  24 August 2022      Accepted manuscript online:  21 September 2022
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  02.50.Ga (Markov processes)  
  02.50.Ng (Distribution theory and Monte Carlo studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11971055) and the Beijing Natural Science Foundation, China (Grant No. 1202019).
Corresponding Authors:  Wanbiao Ma     E-mail:  wanbiao_ma@ustb.edu.cn

Cite this article: 

Rong Liu(刘蓉) and Wanbiao Ma(马万彪) Dynamical analysis for the sustained harvesting of microorganisms using flocculants in a random environment 2023 Chin. Phys. B 32 050502

[1] Ananthi V, Balaji P, Sindhu R, Kim S H, Pugazhendhi A and Arun A 2021 Sci. Total Environ. 780 146467
[2] Wang S K, Stiles A R, Guo C and Liu C Z 2015 Algal Res. 9 178
[3] Li S, Hu T, Xu Y, Wang J, Chu R, Yin Z, Mo F and Zhu L 2020 Renew. Sustain. Energy Rev. 131 110005
[4] Yamada T, Furusawa C, Nagahisa K, Kashiwagi A, Yomo T and Shimizu H 2007 Biosystems 90 614
[5] Tai X, Ma W, Guo S, Yan H and Yin C 2015 Math. Pract. Theory. 45 198 (in Chinese)
[6] Wang W, Ma W and Yan H 2016 Appl. Sci. 6 221
[7] Zhang H and Zhang T 2020 Appl. Math. Lett. 103 106217
[8] Liu R and Ma W 2021 Chaos, Solitons & Fractals 147 110951
[9] Guo S, Cui J A and Ma W 2021 DCDS-B 27 3831
[10] Sikder A and Roy A B 1993 Biosystems 31 39
[11] Jiang D, Shi N and Li X 2008 J. Math. Anal. Appl. 340 588
[12] Li X and Mao X 2009 Discrete Contin Dyn. Syst. 24 523
[13] Liu M, Wang K and Wu Q 2011 Bull Math Biol 73 1969
[14] Lv J, Wang K and Chen D 2015 Methodol Comput Appl Probab 17 403
[15] Xu W, Wang X Y and Liu X Z 2015 Chin. Phys. B 24 050204
[16] Yang J and Wang W 2017 Appl. Math. Lett. 63 59
[17] Wei F and Wang C 2020 Appl. Math. Model. 81 113
[18] Roy J, Barman D and Alam S 2020 Biosystems 197 104176
[19] Li D X and Zhang N 2020 Chin. Phys. B 29 090201
[20] Huo L A, Dong Y F and Lin T T 2021 Chin. Phys. B 30 080201
[21] Xu C, Yu Y, Ren G, Hai X and Lu Z 2021 J. Comput. Nonlinear Dyn. 16 111004
[22] Mao X 2008 Stochastic Differential Equations and Applications 2nd edn. (Chichester: Horwood)
[23] Khasminskii R 2012 Stochastic Stability of Differential Equations (Berlin: Springer)
[24] Wang L, Jiang D and O'Regan D 2016 Commun. Nonlinear Sci. Numer. Simul. 37 1
[25] Zhang Q and Jiang D 2016 J Math Chem 54 777
[26] Wang L and Jiang D 2017 Appl. Math. Lett. 73 22
[27] Doering C R 1986 Phys. Rev. A 34 2564
[28] Wang C J and Mei D C 2008 Chin. Phys. B 17 479
[29] Qin Y H, Luo X S and Wei D Q 2010 Chin. Phys. B 19 050511
[30] Su M B and Rong H W 2011 Chin. Phys. B 20 060501
[31] Gu R C, Xu Y, Zhang H Q and Sun Z K 2011 Acta Phys. Sin. 60 110514 (in Chinese)
[32] Wei Y G, Zeng C H, Wang H, Li K Z and Hu J H 2013 Chin. Phys. B 22 060503
[33] Hailong Z, Enrong W, Fuhong M and Ning Z 2016 Chin. Phys. B 25 030503
[34] Yuan S, Wu D, Lan G and Wang H 2020 Bull Math Biol 82 55
[35] Yang A, Wang H, Zhang T and Yuan S 2022 Chaos 32 043116
[1] Detecting physical laws from data of stochastic dynamical systems perturbed by non-Gaussian α-stable Lévy noise
Linghongzhi Lu(陆凌弘志), Yang Li(李扬), and Xianbin Liu(刘先斌). Chin. Phys. B, 2023, 32(5): 050501.
[2] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[3] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[4] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
[5] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[6] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[7] Stochastic stability of the derivative unscented Kalman filter
Hu Gao-Ge (胡高歌), Gao She-Sheng (高社生), Zhong Yong-Min (种永民), Gao Bing-Bing (高兵兵). Chin. Phys. B, 2015, 24(7): 070202.
[8] Current and efficiency of Brownian particles under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydıner. Chin. Phys. B, 2015, 24(4): 040501.
[9] Stability and performance analysis of a jump linear control system subject to digital upsets
Wang Rui (王蕊), Sun Hui (孙辉), Ma Zhen-Yang (马振洋). Chin. Phys. B, 2015, 24(4): 040201.
[10] Lyapunov function as potential function:A dynamical equivalence
Yuan Ruo-Shi (袁若石), Ma Yi-An (马易安), Yuan Bo (苑波), Ao Ping (敖平). Chin. Phys. B, 2014, 23(1): 010505.
[11] Random-phase-induced chaos in power systems
Qin Ying-Hua(覃英华), Luo Xiao-Shu(罗晓曙), and Wei Du-Qu(韦笃取). Chin. Phys. B, 2010, 19(5): 050511.
[12] Stochastic systems with cross-correlated Gaussian white noises
Wang Cheng-Yu(王成玉), Gao Yun(高云), Song Yu-Min(宋玉敏), Zhou Peng(周鹏), and Yang Hai(杨海). Chin. Phys. B, 2010, 19(11): 116401.
[13] Multi-fractal analysis of highway traffic data
Shang Peng-Jian(商朋见) and Shen Jin-Sheng(申金升). Chin. Phys. B, 2007, 16(2): 365-373.
[14] Pair correlations in scale-free networks
Huang Zhuang-Xiong (黄壮雄), Wang Xin-Ran (王欣然), Zhu Han (朱涵). Chin. Phys. B, 2004, 13(3): 273-278.
[15] Stochastic resonance in a financial model
Mao Xiao-Ming (毛晓明), Sun Kai (孙锴), Ouyang Qi (欧阳颀). Chin. Phys. B, 2002, 11(11): 1106-1110.
No Suggested Reading articles found!