Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070503    DOI: 10.1088/1674-1056/acc0f9
GENERAL Prev   Next  

Turing/Turing-like patterns: Products of random aggregation of spatial components

Jian Gao(高见)1,2,†, Xin Wang(王欣)1,2, Xinshuang Liu(刘心爽)1,2, and Chuansheng Shen(申传胜)1,2
1 International Joint Research Center of Simulation and Control for Population Ecology of Yangtze River in Anhui, Anqing Normal University, Anqing 246011, China;
2 School of Mathematics and Physics, Anqing Normal University, Anqing 246011, China
Abstract  Turing patterns are typical spatiotemporal ordered structures in various systems driven far from thermodynamic equilibrium. Turing's reaction-diffusion theory, containing a long-range inhibiting agent and a local catalytic agent, has provided an explanation for the formation of some patterns in nature. Numerical, experimental and theoretical studies about Turing/Turing-like patterns have been generally focused on systems driven far from thermodynamic equilibrium. The local dynamics of these systems are commonly very complex, which brings great difficulties to understanding of formation of patterns. Here, we investigate a type of Turing-like patterns in a near-equilibrium thermodynamic system experimentally and theoretically, and put forward a new formation mechanism and a quantitative method for Turing/Turing-like patterns. Specifically, we observe a type of Turing-like patterns in starch solutions, and study the effect of concentration on the structure of patterns. The experimental results show that, with the increase of concentration, patterns change from spots to inverse spots, and labyrinthine stripe patterns appear in the region of intermediate concentration. We analyze and model the formation mechanism of these patterns observed in experiments, and the simulation results agree with the experimental results. Our conclusion indicates that the random aggregation of spatial components leads to formation of these patterns, and the proportion of spatial components determines the structures. Our findings shed light on the formation mechanism for Turing/Turing-like patterns.
Keywords:  Turing-like pattern      collective behavior      random aggregation      pattern formation      multi-particle system  
Received:  17 January 2023      Revised:  28 February 2023      Accepted manuscript online:  03 March 2023
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  47.54.-r (Pattern selection; pattern formation)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12205006 and 11975025), the Excellent Youth Scientific Research Project of Anhui Province (Grant No. 2022AH030107), the Natural Science Foundation of Anhui Higher Education Institutions of China (Grant No. KJ2020A0504), and the International Joint Research Center of Simulation and Control for Population Ecology of Yangtze River in Anhui (Grant No. 12011530158).
Corresponding Authors:  Jian Gao     E-mail:  gaojian1612@163.com

Cite this article: 

Jian Gao(高见), Xin Wang(王欣), Xinshuang Liu(刘心爽), and Chuansheng Shen(申传胜) Turing/Turing-like patterns: Products of random aggregation of spatial components 2023 Chin. Phys. B 32 070503

[1] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Turing A M 1952 Phil. Trans. R. Soc. Lond. B 237 37
[3] Kondo S and Miura T 2010 Science 329 1616
[4] Green J B A and Sharpe J 2015 Development 142 1203
[5] Economou A D, Ohazama A, Porntaveetus T et al. 2012 Nat. Genet. 44 348
[6] Onimaru K, Marcon L, Musy M, Tanaka M and Sharpe J 2016 Nat. Commun. 7 11582
[7] Koch A J and Meinhardt H 1994 Rev. Mod. Phys. 66 1481
[8] Yuan X J, Shao X, Liao H M and Ouyang Q 2009 Chin. Phys. Lett. 26 024702
[9] Castets V, Dulos E, Boissonade J and De-Kepper P 1990 Phys. Rev. Lett. 64 2953
[10] Ouyang Q and Swinney H L 1991 Nature 352 610
[11] Kyoung J L, McCormick W D, Ouyang Q and Swinney H L 1993 Science 261 192
[12] Horváth J, Szalai I and De-Kepper P 2009 Science 324 772
[13] Kondo S and Asai R 1995 Nature 376 765
[14] Meinhardt H 2009 The Algorithmic Beauty of Sea Shells (Springer-Verlag)
[15] Boettiger A, Ermentrout B and Oster G 2009 Proc. Natl. Acad. Sci. USA 106 6837
[16] Dziekan P, Hansen J S and Nowakowski B 2014 J. Chem. Phys. 141 124106
[17] Tan Z, Chen S, Peng X, Zhang L and Gao C 2018 Science 360 518
[18] Fuseya Y, Katsuno H, Behnia K and Kapitulnik A 2021 Nat. Phys. 17 1031
[19] Bénard H 1900 Rev. Gen. Sci. Pures Appl. 11 1271
[20] Rayleigh L 1917 Proc. Roy. Soc. Lond. A 93 148
[21] Berge L I, Ahlers G and Cannell D S 1993 Phys. Rev. E 48 R3236
[22] Pena B. and Perez-Garcia C 2001 Phys. Rev. E 64 056213
[23] Weiss S, Seiden G and Bodenschatz E 2012 New J. Phys. 14 053010
[24] Astrov Y A, Müller I, Ammelt E et al. 1998 Phys. Rev. Lett. 80 5341
[25] Ammelt E, Astrov Y and Purwins H G 1998 Phys. Rev. E 58 7109
[26] Purwins H G, Bödeker H U and Liehr A W 2004 AIP Conf. Proc. 742 289
[27] Wang Y, Zhang R, Wang Z and Han Z 2019 Chin. Phys. B 28 050503
[28] Karig D, Martini K M, Lu T, DeLateur N A, Goldenfeld N and Weiss R 2018 Proc. Natl. Acad. Sci. USA 115 6572
[29] Zincenko A, Petrovskii S, Volpert V and Banerjee M 2021 J. R. Soc. Interface 18 20210034
[30] Cooper R L, Thiery A P, Fletcher A G, Delbarre D J, Rasch L J and Fraser G J 2018 Sci. Adv. 4 eaau5484
[31] Miyazawa S, Okamoto M and Kondo S 2010 Nat. Commun. 1 66
[32] Henyey L G and Grasberger W 1955 Astrophys. J. 122 498
[33] Vilar J M G and Rubi J M 2001 Proc. Natl. Acad. Sci. USA 98 11081
[34] Kleidon A 2010 Phil. Trans. R. Soc. B 365 1303
[35] Ross J, Hunt K L C and Hunt P M 1988 J. Chem. Phys. 88 2719
[36] Prigogine I and Stengers I 1979 The New Alliance (Paris: Gallimard)
[37] Wang W M, Liu H Y, Cai Y L and Li Z Q 2011 Chin. Phys. B 20 074702
[38] He Y F, Liu F C, Fan W L and Dong L F 2012 Chin. Phys. B 21 034701
  • 1. .mp4(3430KB)

  • 2. .mp4(3868KB)

  • 3. .mp4(611KB)

[1] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[2] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[3] Diffusional inhomogeneity in cell cultures
Jia-Zheng Zhang(张佳政), Na Li(李娜), Wei Chen(陈唯). Chin. Phys. B, 2018, 27(2): 028705.
[4] Pattern formation in superdiffusion Oregonator model
Fan Feng(冯帆), Jia Yan(闫佳), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2016, 25(10): 104702.
[5] Asymmetric and symmetric meta-correlations in financial markets
Xiaohui Li(李晓辉), Xiangying Shen(沈翔瀛), Jiping Huang(黄吉平). Chin. Phys. B, 2016, 25(10): 108903.
[6] Numerical simulation and analysis of complex patterns in a two-layer coupled reaction diffusion system
Li Xin-Zheng (李新政), Bai Zhan-Guo (白占国), Li Yan (李燕), He Ya-Feng (贺亚峰), Zhao Kun (赵昆). Chin. Phys. B, 2015, 24(4): 048201.
[7] Control of the patterns by using time-delayed feedback near the codimension-three Turing–Hopf–Wave bifurcations
Wang Hui-Juan (王慧娟), Wang Yong-Jie (王永杰), Ren Zhi (任芝). Chin. Phys. B, 2013, 22(12): 120503.
[8] Controlling the transition between Turing and antispiral patterns by using time-delayed-feedback
He Ya-Feng(贺亚峰), Liu Fu-Cheng(刘富成), Fan Wei-Li(范伟丽), and Dong Li-Fang(董丽芳) . Chin. Phys. B, 2012, 21(3): 034701.
[9] Spatial pattern formation of a ratio-dependent predator–prey model
Lin Wang(林望). Chin. Phys. B, 2010, 19(9): 090206.
[10] Dendritic sidebranches of a binary system with enforced flow
Li Xiang-Ming(李向明) and Wang Zi-Dong(王自东). Chin. Phys. B, 2010, 19(12): 126401.
[11] Three-dimensional interfacial wave theory of dendritic growth: (I). multiple variables expansion solutions
Chen Yong-Qiang(陈永强), Tang Xiong-Xin(唐熊忻), and Xu Jian-Jun(徐鉴君). Chin. Phys. B, 2009, 18(2): 671-685.
[12] Three-dimensional interfacial wave theory of dendritic growth: (II). non-axi-symmetric global wave modes and selection criterion of pattern formation
Chen Yong-Qiang(陈永强), Tang Xiong-Xin(唐熊忻), and Xu Jian-Jun(徐鉴君). Chin. Phys. B, 2009, 18(2): 686-698.
[13] Laser-induced pattern formation from homogeneous polyisoprene solutions
Lin Dian-Yang(林殿阳), Li Ming(黎明), Wang Shu-Jie(王淑杰), and Lü Zhi-Wei(吕志伟). Chin. Phys. B, 2008, 17(6): 2156-2159.
No Suggested Reading articles found!